OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 7 — Mar. 1, 2008
  • pp: 967–974

Efficient versatile-repetition-rate picosecond source for material processing applications

Christoph Gerhard, Frédéric Druon, Pierre Blandin, Marc Hanna, François Balembois, Patrick Georges, and F. Falcoz  »View Author Affiliations

Applied Optics, Vol. 47, Issue 7, pp. 967-974 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (20724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of an efficient and simple picosecond diode-pumped solid-state laser source with a versatile repetition rate (typically 1 Hz 1 MHz ) for material processing applications. The laser source is based on a 4 MHz repetiton rate mode-locked oscillator and a passive 3D multipass amplifier both based on Nd : YVO 4 crystals. Micromachining experiments were performed to study the influence of pulse energy on the machining quality for Al, Cu, paper, and glass.

© 2008 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 27, 2007
Revised Manuscript: December 5, 2007
Manuscript Accepted: December 20, 2007
Published: February 28, 2008

Christoph Gerhard, Frédéric Druon, Pierre Blandin, Marc Hanna, François Balembois, Patrick Georges, and F. Falcoz, "Efficient versatile-repetition-rate picosecond source for material processing applications," Appl. Opt. 47, 967-974 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. F.Dausinger, F.Lichtner, and H.Lubatschowski, eds., Femtosecond Technology for Technical and Medical Applications, (Springer Verlag, 2004).
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109-115 (1996). [CrossRef]
  3. F. Dausinger, H. Hügel, and V. Konov, “Micromachining with ultrashort laser pulses: from basic understanding to technical applications,” Proc. SPIE 5147, 106-114 (2003). [CrossRef]
  4. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716-2722(1997). [CrossRef]
  5. J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13, 10597-10607 (2005). [CrossRef] [PubMed]
  6. P. B. Corkum, F. Brunel, N. K. Sherman, and T. Shrinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61 (2886-2889 (1988). [CrossRef] [PubMed]
  7. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24, 1562-1568 (2007). [CrossRef]
  8. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” J. Appl. Phys. 69S359-S366 (1999).
  9. A. Courjaud, C. Hoenninger, and E. Mottay, “1 mJ, multi-Khz, sub-500 fs diode-pumped ytterbium laser amplifier,” presented at the 25th international congress on applications of lasers and electro-optics (ICALEO 2006), Scottsdale, Arizona, 30 October-2 November 2006; www.amplitude-systemes.com.
  10. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134-142 (1996). [CrossRef]
  11. Time-Bandwidth Products, www.time-bandwidth.com.
  12. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 μJ, subpicosecond fiber laser system,” Opt. Express 14, 12546-12551 (2006). [CrossRef] [PubMed]
  13. T. Herrmann and B. Klimt, “Micromachining with picosecond lasers: precise, cost efficient, industrially reliable,” in LUMERA LASER: Laser Technik Journal (Wiley-VCH,), www.lumera-laser.com.
  14. F. Dausinger, “Femtosecond technology for precision manufacturing: fundamental and technical aspects,” Proc. SPIE 4830, 471-478 (2003). [CrossRef]
  15. B. Le Drogoff, F. Vidal, S. Laville, M. Chaker, T. Johnston, O. Barthélemy, J. Margot, and M. Sabsabi, “Laser-ablated volume and depth as a function of pulse duration in aluminum targets,” Appl. Opt. 44, 278-281 (2005). [CrossRef] [PubMed]
  16. D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer Verlag, 2004), pp. 131-156.
  17. C. Föhl, D. Breitling, K. Jasper, J. Radtke, and F. Dausinger, “Precision drilling of metals and ceramics with short and ultrashort pulsed solid-state lasers,” Proc. SPIE 4426, 104-107 (2002). [CrossRef]
  18. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” J. Appl. Phys. 68, 563-567(1999).
  19. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimentional photonics structure,” J. Mod. Phys. 10, 2533-2542 (2004).
  20. C. Gerhard, F. Druon, P. Georges, V. Couderc, and P. Leproux, “Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror,” Opt. Express 14, 7093-7098 (2006). [CrossRef] [PubMed]
  21. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  22. V. Couderc, O. Guy, E. Roisse, and A. Bartélémy, “Modelocking of CW Nd:YAG laser using nonlinear polarisation evolution in type II frequency doubling crystal,” Electron. Lett. 34, 672-677 (1998). [CrossRef]
  23. V. Couderc, A. Albert, and A. Barthélémy, “Low repetition rate of a mode locked Nd:YAG laser using quadratic polarization switching,” Opt. Commun. 220, 413-417 (2003). [CrossRef]
  24. V. Couderc, A. Bartélémy, and F. Louradour, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103-111(1999). [CrossRef]
  25. D. N. Papadopoulos, S. Forget, M. Delaigue, F. Druon, F. Balembois, and P. Georges, “Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate,” Opt. Lett. 28, 1838-1840 (2003). [CrossRef] [PubMed]
  26. S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002). [CrossRef]
  27. A. Agnesi, L. Carrà, F. Pirzio, D. Scarpa, A. Tomaselli, G. Reali, C. Vacchi, and C. Braggio, “High-gain diode-pumped amplifier for generation of microjoule-level picosecond pulses,” Opt. Express 14, 9244-9249 (2006). [CrossRef] [PubMed]
  28. H. Plaessmann, S. A. Re, J. J. Alonis, D. L. Vecht, and W. M. Grossman, “Multipass diode-pumped solid-state optical amplifier,” Opt. Lett. 18, 1420-1422 (1993). [CrossRef] [PubMed]
  29. A. Killi, J. Dörring, U. Morgner, M. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13, 1916-1922 (2005). [CrossRef] [PubMed]
  30. F. Druon, F. Balembois, P. Georges, and A. Brun, “High-repetition-rate 300 -ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier,” Opt. Lett. 24, 499-501 (1999). [CrossRef]
  31. G. Smith and M. J. Damzen, “Spatially-selective amplified spontaneous emission source derived from an ultrahigh gain solid-state amplifier,” Opt. Express 14, 3318-3323 (2006). [CrossRef] [PubMed]
  32. A. M. Scott, G. Cook, and A. P. G. Davies, “Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry,” Appl. Opt. 40, 2461-2467(2001). [CrossRef]
  33. J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968-970 (1993). [CrossRef] [PubMed]
  34. Y. Ojima, K. Nawata, and T. Omatsu, “Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror,” Opt. Express 13, 8993-8998 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited