OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 8 — Mar. 10, 2008
  • pp: 1037–1047

Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method

Peng-Wang Zhai, George W. Kattawar, and Ping Yang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 8, pp. 1037-1047 (2008)
http://dx.doi.org/10.1364/AO.47.001037


View Full Text Article

Enhanced HTML    Acrobat PDF (8536 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a powerful 3D Monte Carlo code, as part of the Radiance in a Dynamic Ocean (RaDyO) project, which can compute the complete effective Mueller matrix at any detector position in a completely inhomogeneous turbid medium, in particular, a coupled atmosphere-ocean system. The light source can be either passive or active. If the light source is a beam of light, the effective Mueller matrix can be viewed as the complete impulse response Green matrix for the turbid medium. The impulse response Green matrix gives us an insightful way to see how each region of a turbid medium affects every other region. The present code is validated with the multicomponent approach for a plane-parallel system and the spherical harmonic discrete ordinate method for the 3D scalar radiative transfer system. Furthermore, the impulse response relation for a box-type cloud model is studied. This 3D Monte Carlo code will be used to generate impulse response Green matrices for the atmosphere and ocean, which act as inputs to a hybrid matrix operator–Monte Carlo method. The hybrid matrix operator–Monte Carlo method will be presented in part II of this paper.

© 2008 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 17, 2007
Revised Manuscript: January 3, 2008
Manuscript Accepted: January 9, 2008
Published: March 5, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Peng-Wang Zhai, George W. Kattawar, and Ping Yang, "Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method," Appl. Opt. 47, 1037-1047 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-8-1037


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Res. 33, 283-308(1994). [CrossRef]
  2. J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transf. 58, 379-398 (1997). [CrossRef]
  3. K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429-446 (1998). [CrossRef]
  4. Y. Chen, K. N. Liou, and Y. Gu, “An efficient diffusion approximation for 3D radiative transfer parameterization: application to cloudy atmospheres,” J. Quant. Spectrosc. Radiat. Transf. 92, 189-200 (2005). [CrossRef]
  5. L. G. Stenholm, H. Störzer, and R. Wehrse, “An efficient method for the solution of 3-D radiative transfer problems,” J. Quant. Spectrosc. Radiat. Transf. 45, 47-56 (1991). [CrossRef]
  6. R. Cahalan, W. Ridgway, and W. Wiscombe, “Independent pixel and Monte Carlo estimates of stratocumulus albedo,” J. Atmos. Sci. 51, 3776-3790 (1994). [CrossRef]
  7. D. M. O'Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 48, 41-59 (1992). [CrossRef]
  8. L. Roberti and C. Kummerow, “Monte Carlo calculations of polarized microwave radiation emerging from cloud structures,” J. Geophy. Res. 104, 2093-2104 (1999). [CrossRef]
  9. A. Battaglia and S. Mantovani, “Forward Monte Carlo computations of fully polarized microwave radiation in non-isotropic media,” J. Quant. Spectrosc. Radiat. Transf. 95, 285-308(2005). [CrossRef]
  10. Y. Chen and K. N. Liou, “A Monte Carlo method for 3D thermal infrared radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 101, 166-178 (2006). [CrossRef]
  11. R. F. Cahalan, L. Oreopoulos, A. Marshak, K. F. Evans, A. B. Davis, R. Pincus, K. H. Yetzer, B. Mayer, R. Davies, T. P. Ackerman, H. W. Barker, E. E. Clothiaux, R. G. Ellingson, M. J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O'Hirok, P. T. Partain, S. M. Prigarin, A. N. Rublev, G. L. Stephens, F. Szczap, E. E. Takara, T. Vrnai, G. Wen, and T. B. Zhuravleva, “The 13RC: bringing together the most advanced radiative transfer tools for cloudy atmospheres,” Bull. Am. Meteorol. Soc. 86, 1275-1293 (2005). [CrossRef]
  12. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, The Monte Carlo Methods in Atmospheric Optics (Springer-Verlag, 1980).
  13. L. Roberti, “Monte Carlo radiative transfer in the microwave and in the visible: biasing techniques,” Appl. Opt. 36, 7929-7938 (1997). [CrossRef]
  14. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400-412 (2001). [CrossRef]
  15. C. Cox and W. Munk, “Statistics of sea surface derived from sun glitter,” J. Mar. Res. 13, 198-227 (1954).
  16. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399-416 (1852).
  17. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  19. D. G. Collins, W. G. Blattner, M. B. Wells, and H. G. Horak, “Backward Monte Carlo calculations of the polarization characteristics of the radiation emerging from spherical-shell atmospheres,” Appl. Opt. 11, 2684-2696 (1972). [CrossRef] [PubMed]
  20. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453-1472 (1989). [CrossRef]
  21. H. H. Tynes, “Monte Carlo solutions of the radiative transfer equation for scattering systems,” Ph.D. dissertation (Texas A&M University, 2001), p. 46.
  22. Concise Dictionary of Scientific Biography (Scribner, 1981), p. 643. Willebrord Snel von Royen used only one l in his last name.
  23. R. W. Preisendorfer, Radiative Transfer on Discrete Spaces (Pergamon, 1965).
  24. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  25. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803-2812 (1993). [CrossRef] [PubMed]
  26. E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spectrosc. Radiat. Transf. 55, 19-31 (1996). [CrossRef]
  27. Q. Liu, C. Simmer, and E. Ruprcht, “Three-dimensional radiative transfer effects of clouds in the microwave spectral range,” J. Geophys. Res. 101, 4289-4298 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited