OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 8 — Mar. 10, 2008
  • pp: 1063–1071

Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere–ocean systems. II. The hybrid matrix operator—Monte Carlo method

Peng-Wang Zhai, George W. Kattawar, and Ping Yang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 8, pp. 1063-1071 (2008)
http://dx.doi.org/10.1364/AO.47.001063


View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three- dimensional atmosphere–ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.

© 2008 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 17, 2007
Revised Manuscript: January 3, 2008
Manuscript Accepted: January 9, 2008
Published: March 6, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Peng-Wang Zhai, George W. Kattawar, and Ping Yang, "Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator--Monte Carlo method," Appl. Opt. 47, 1063-1071 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-8-1063


Sort:  Year  |  Journal  |  Reset  

References

  1. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  2. R. W. Preisendorfer, Radiative Transfer on Discrete Spaces (Pergamon, 1965).
  3. H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications (Academic, 1980), Vols. 1 and 2.
  4. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge Press, 2006).
  5. K. N. Liou, “A numerical experiment on Chandrasekhar's discrete-ordinate method for radiative transfer: application to cloudy and hazy atmospheres,” J. Atmos. Sci. 30, 1303-1326(1973). [CrossRef]
  6. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988). [CrossRef] [PubMed]
  7. F. Weng, “A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere--I. Theory,” J. Quant. Spectrosc. Radiat. Transfer 47, 19-33 (1992). [CrossRef]
  8. C. N. Adams and G. W. Kattawar, “Solutions of the equations of radiative transfer by an invariant imbedding approach,” J. Quant. Spectrosc. Radiat. Transfer 10, 341-356 (1970). [CrossRef]
  9. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803-2812 (1993). [CrossRef] [PubMed]
  10. G. N. Plass and G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415-419 (1968). [CrossRef] [PubMed]
  11. G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519-1527 (1968). [CrossRef] [PubMed]
  12. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400-412 (2001). [CrossRef]
  13. D. M. O'Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 48, 41-59 (1992). [CrossRef]
  14. K. F. Evans, “The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429-446 (1998). [CrossRef]
  15. A. Sánchez, T. F. Smith, and W. F. Krajewski, “A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method,” Atmos. Res. 33, 283-308(1994). [CrossRef]
  16. J. L. Haferman, T. F. Smith, and W. F. Krajewski, “A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles,” J. Quant. Spectrosc. Radiat. Transfer 58, 379-398 (1997). [CrossRef]
  17. Y. Gu and K. N. Liou, “Radiation parameterization for three-dimensional inhomogeneous cirrus clouds: application to climate models,” J. Clim. 14, 2443-2457 (2001). [CrossRef]
  18. A.Marshak and A.B.Davis, eds., 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005). [CrossRef]
  19. Y. Chen, K. N. Liou, and Y. Gu, “A efficient diffusion approximation for 3D radiative transfer parameterization: application to cloudy atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 92, 189-200 (2005). [CrossRef]
  20. L. G. Stenholm, H. Storzer, and R. Wehrse, “An efficient method for the solution of 3-D radiative transfer problems,” J. Quant. Spectrosc. Radiat. Transfer 45, 47-56 (1991). [CrossRef]
  21. I3RC group, “I3RC Monte Carlo community model of 3D radiative transfer,” http://i3rc.gsfc.nasa.gov/I3RC-intro.html.
  22. R. Pincus, H. W. Barker, and J.-J. Morcrette, “A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields,” J. Geophys. Res. 108, 4376-4381(2003). [CrossRef]
  23. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484-7504 (1993). [CrossRef] [PubMed]
  24. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  25. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172-4182(1985). [CrossRef] [PubMed]
  26. P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453-4471 (1995). [CrossRef] [PubMed]
  27. C. Cox and W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198-227 (1954).
  28. P.-W. Zhai, G. W. Kattawar, and P. Yang, “Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method,” Appl. Opt. 47, 1037-1047 (2008).
  29. G. N. Plass, G. W. Kattawar, and F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh scattering,” Appl. Opt. 12, 314-329 (1973). [CrossRef] [PubMed]
  30. G. W. Kattawar, G. N. Plass, and F. E. Catchings, “Matrix operator theory of radiative transfer. 2: scattering from maritime haze,” Appl. Opt. 12, 1071-1084 (1973). [CrossRef] [PubMed]
  31. P. C. Waterman, “Matrix-exponential description of radiative transfer,” J. Opt. Soc. Am. 71, 410-422 (1981).
  32. J. Fischer and H. Grassl, “Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix operator approach,” Appl. Opt. 23, 1032-1039 (1984). [CrossRef] [PubMed]
  33. Q. Liu and E. Ruprecht, “Radiative transfer model: matrix operator method,” Appl. Opt. 35, 4229-4237 (1996). [CrossRef] [PubMed]
  34. P. N. Reinersman and K. L. Carder, “Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions,” Appl. Opt. 43, 2734-2743 (2004). [CrossRef] [PubMed]
  35. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453-1472 (1989). [CrossRef]
  36. L. C. Henyey and J. L. GreenStein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941). [CrossRef]
  37. H. H. Poole, “The angular distribution of submarine daylight in deep water,” Sci. Proc. R. Dublin Soc. 24, 29-42 (1945).
  38. R. W. Preisendorfer, “Theoretical proof of the existance of characteristic diffuse light in natural waters,” J. Mar. Res. 18, 1-9 (1959).
  39. G. W. Kattawar and G. N. Plass, “Asymptotic radiance and polarization in optically thick media: ocean and clouds,” Appl. Opt. 15, 3166-3178 (1976). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited