OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 8 — Mar. 10, 2008
  • pp: 1063–1071

Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere–ocean systems. II. The hybrid matrix operator—Monte Carlo method

Peng-Wang Zhai, George W. Kattawar, and Ping Yang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 8, pp. 1063-1071 (2008)
http://dx.doi.org/10.1364/AO.47.001063


View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three- dimensional atmosphere–ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.

© 2008 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 17, 2007
Revised Manuscript: January 3, 2008
Manuscript Accepted: January 9, 2008
Published: March 6, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Peng-Wang Zhai, George W. Kattawar, and Ping Yang, "Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator--Monte Carlo method," Appl. Opt. 47, 1063-1071 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-8-1063

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited