OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 8 — Mar. 10, 2008
  • pp: 1097–1102

Frequency stabilization of a 1.3 μ m laser diode using double resonance optical pumping in the 5 P 3 / 2 6 S 1 / 2 transition of Rb atoms

Han Seb Moon  »View Author Affiliations

Applied Optics, Vol. 47, Issue 8, pp. 1097-1102 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The frequency stabilization of a laser diode in the 1.3 μm region using double resonance optical pumping (DROP) spectrum in the 5 P 3 / 2 6 S 1 / 2 transition of Rb 87 atoms is demonstrated. The signal-to-noise ratio of the DROP spectrum is approximately ten times higher than that of the previous optical–optical double resonance spectrum. The spectral linewidth of the DROP measures 8.4 MHz . When the frequency of a 1.367 μm laser diode is stabilized to the DROP spectrum, the frequency stability is 9 × 10 12 after 100 s . Also, the wavelength of the frequency-stabilized laser locked to the 5 P 3 / 2 6 S 1 / 2 transition using a wavelength meter is measured.

© 2008 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(060.4510) Fiber optics and optical communications : Optical communications
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:

Original Manuscript: November 28, 2007
Manuscript Accepted: January 7, 2008
Published: March 7, 2008

Han Seb Moon, "Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in the 5P3/2-6S1/2 transition of Rb atoms," Appl. Opt. 47, 1097-1102 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. Th.Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  2. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323-325 (2005). [CrossRef]
  3. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, “Accurate absolute frequencies of the ν1+ν3 band of 13C2+H2 determined using an infrared mode-locked Cr:YAG laser frequency comb,” J. Opt. Soc. Am. B 23, 741-749 (2006). [CrossRef]
  4. W. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721-741 (1998). [CrossRef]
  5. Y. C. Chung and R. W. Tkach, “Frequency stabilization of a 1.3 μm DFB laser using optogalvanic effect,” Electron. Lett. 24, 804-805 (1988). [CrossRef]
  6. S. Yamaguchi and M. Suzuki, “Frequency locking of an InGaAsP semiconductor laser to the first overtone vibration-rotation lines of hydrogen fluoride,” Appl. Phys. Lett. 41, 1034-1036 (1982). [CrossRef]
  7. K. Chan, H. Ito, and H. Inaba, “Absorption measurement of ν1+2ν3 band of CH4 at 1.33 μm using an InGaAsP light emitting diode,” Appl. Opt. 22, 3802-3804 (1983). [CrossRef] [PubMed]
  8. N. Moriwaki, T. Tsuchida, Y. Takehisa, and N. Ohashi, “1.33 μm DFB diode laser spectroscopy of 12C2+H2,” J. Mol. Spectrosc. 137, 230-234 (1989). [CrossRef]
  9. A. Arie, M. L. Bortz, M. M. Fejer, and R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757-1759 (1993). [CrossRef] [PubMed]
  10. T. Dennis and E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert, “Wavelength references for 1300-nm wavelength-division multiplexing,” J. Lightwave Technol. 20, 776-804 (2002). [CrossRef]
  11. H. Sasada, “Wavelength measurements of the sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photon. Technol. Lett. 4, 1307-1309 (1992). [CrossRef]
  12. M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42, 162-166(1993). [CrossRef]
  13. R. Boucher, M. Breton, N. Cyr, C. Julien, and M. Têtu, “Dither-free absolute frequency locking of a 1.3 μm DFB laser on 87Rb,” IEEE Photon. Technol. Lett. 4, 327-329 (1992). [CrossRef]
  14. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2+H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840-842 (1994). [CrossRef] [PubMed]
  15. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967 (2004). [CrossRef]
  16. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24, 2157-2164(2007). [CrossRef]
  17. W. K. Lee, H. S. Moon, and H. S. Suh, “Measurement of the absolute energy level and hyperfine structure of the 87Rb4D5/2 state,” Opt. Lett. 32, 2810-2812 (2007). [CrossRef] [PubMed]
  18. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31-75 (1977). [CrossRef]
  19. O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am 51, 1058-1061 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited