OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 9 — Mar. 20, 2008
  • pp: 1200–1205

Self-referenced interferometry for the characterization of axicon lens quality

David Kupka, Philip Schlup, and Randy A. Bartels  »View Author Affiliations

Applied Optics, Vol. 47, Issue 9, pp. 1200-1205 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple interferometer for the characterization of axicon lenses is presented. The phase cone acquired by a wave propagating through an axicon, when interfered with a collinear reference wave, produces a nearly cylindrically symmetric self-referenced interference pattern from which the distortions of the axicon surface may be readily obtained. Comparison with two-dimensional off-axis interferometry is used to validate the self-referenced technique. The measurements are based on retrieval of the accrued spatial phase distribution from interference fringes with on- and off-axis reference beams and are found to be equivalent. We use the ellipticity of the phase maps to qualify axicon lenses, which are expected to exhibit radial symmetry and engage the self-referential capability of the on-axis method to derive deviation maps that characterize the surface quality of the axicons.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.4630) Instrumentation, measurement, and metrology : Optical inspection

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 12, 2007
Manuscript Accepted: January 9, 2008
Published: March 14, 2008

David Kupka, Philip Schlup, and Randy A. Bartels, "Self-referenced interferometry for the characterization of axicon lens quality," Appl. Opt. 47, 1200-1205 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. J. H. McLeod, “The Axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592-597 (1954). [CrossRef]
  2. P. A. Belanger and M. Rioux, “Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam,” Appl. Opt. 17, 1080-1086 (1978). [CrossRef] [PubMed]
  3. I. Golub and R. Tremblay, “Light focusing and guiding by an axicon-pair-generated tubular light beam,” J. Opt. Soc. Am. B 7, 1264-1267 (1990). [CrossRef]
  4. J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22, 117-119 (1997). [CrossRef] [PubMed]
  5. I. Manek, Y. B. Ovchinnikov, and R. Grimm, “Generation of a hollow laser beam for atom trapping using an axicon,” Opt. Commun. 147, 67-70 (1998). [CrossRef]
  6. J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Y. Margolin, and L. N. Pyatnitskii, “Tubular plasma generation with a high-power hollow Bessel beam,” Phys. Rev. E 62, R7603-R7606 (2000). [CrossRef]
  7. J. Katzenstein, “Axicon-scanned Fabry-Perot spectrometer,” Appl. Opt. 4, 263-266 (1965). [CrossRef]
  8. M. Blanchard, Y. Dastous, G. Roy, and R. Tremblay, “Axicon lenses to produce very long plasmas for lasers,” J. Opt. Soc. Am. 68, 1389 (1978).
  9. J. Fan, T. R. Clark, and H. M. Milchberg, “Generation of a plasma waveguide in an elongated, high repetition rate gas jet,” Appl. Phys. Lett. 73, 3064-3066 (1998). [CrossRef]
  10. M. Couture and M. Piche, “Optical-pumping of infrared-lasers using an axicon geometry,” J. Opt. Soc. Am. A 2, P38 (1985).
  11. G. Kuhnle, G. Marowsky, and G. A. Reider, “Laser amplification using axicon reflectors,” Appl. Opt. 27, 2666-2670 (1988). [CrossRef] [PubMed]
  12. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245(2002). [CrossRef]
  13. G. Indebetouw, “Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning,” J. Mod. Opt. 49, 1479-1500 (2002). [CrossRef]
  14. P. Dufour, M. Piche, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246-9252 (2006). [CrossRef] [PubMed]
  15. E. N. Leith, G. Collins, I. Khoo, and T. Wynn, “Correlation image formation with an axicon,” J. Opt. Soc. Am. 70, 141- 145(1980). [CrossRef]
  16. R. Grunwald, U. Griebner, E. T. J. Nibbering, A. Kummrow, M. Rini, T. Elsaesser, V. Kebbel, H. J. Hartmann, and W. Juptner, “Spatially resolved small-angle noncollinear interferometric autocorrelation of ultrashort pulses with microaxicon arrays,” J. Opt. Soc. Am. A 18, 2923-2931 (2001). [CrossRef]
  17. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527-1531 (1992). [CrossRef]
  18. H. Luo, S. Y. Liu, Z. F. Lin, and C. T. Chan, “Method for accurate description of a radially polarized Gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 32, 1692-1694(2007). [CrossRef] [PubMed]
  19. M. D. Wei, “Generation of bottle beam by focusing a super-Gaussian beam using a lens and an axicon,” Opt. Commun. 277, 19-23 (2007). [CrossRef]
  20. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640-2643(1992). [CrossRef]
  21. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” Opt. Eng. 42, 1555-1566 (1995).
  22. K. Ait-Ameur and F. Sanchez, “Gaussian beam conversion using an axicon,” J. Mod. Opt. 46, 1537-1548 (1999).
  23. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301(2000). [CrossRef]
  24. O. Ren and R. Birngruber, “Axicon: a new laser beam delivery system for corneal surgery,” IEEE J. Quantum Electron. 26, 2305-2308 (1990). [CrossRef]
  25. J. H. Lin, M. D. Wei, H. H. Liang, K. H. Lin, and W. F. Hsieh, “Generation of supercontinuum bottle beam using an axicon,” Opt. Express 15, 2940-2946 (2007). [CrossRef] [PubMed]
  26. S. D. Fantone, “Simple method for testing an axicon,” Appl. Opt. 20, 3685-3686 (1981). [CrossRef] [PubMed]
  27. J. Hayes, K. L. Underwood, J. S. Loomis, R. E. Parks, and J. C. Wyant, “Testing of nonlinear diamond-turned reflaxicons,” Appl. Opt. 20, 235-239 (1981). [CrossRef] [PubMed]
  28. T. Kololuoma, K. Kataja, S. Juuso, J. Aikio, and J. T. Rantala, “Fabrication and characterization of hybrid-glass-based axicons,” Opt. Eng. 41, 3136-3140 (2002). [CrossRef]
  29. M. de Angelis, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Test of a conical lens using a two-beam shearing interferometer,” Opt. Lasers Eng. 39, 155-163 (2003). [CrossRef]
  30. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2005).
  31. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  32. E. N. Leith and J. Upatniek, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962). [CrossRef]
  33. R. Halif and J. Flusser, “Numerically stable direct least-squares fitting of ellipses,” (Department of Software Engineering, Charles University,2000).
  34. J. Garcia-Marquez, D. Malacara-Hernandez, and M. Servin, “Analysis of interferograms with a spatial radial carrier or closed fringes and its holographic analogy,” Appl. Opt. 37, 7977-7982 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited