OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 9 — Mar. 20, 2008
  • pp: 1269–1277

Mid-infrared gas sensing using a photonic bandgap fiber

Nicolas Gayraud, Łukasz W. Kornaszewski, James M. Stone, Jonathan C. Knight, Derryck T. Reid, Duncan P. Hand, and William N. MacPherson  »View Author Affiliations

Applied Optics, Vol. 47, Issue 9, pp. 1269-1277 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1831 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate methane sensing based on Fourier transform infrared spectroscopy using a hollow-core photonic bandgap fiber guiding in the mid-infrared and idler pulses from a femtosecond optical parametric oscillator. Transmission measurements are presented for several fibers, and sensing is demonstrated using a fiber whose bandgap overlaps the methane fundamental absorption lines. The gas filling process of the air core is described, and qualitative methane concentrations measurements to 1000 ppm (parts in 10 6 ) are reported. Operation down to 50 ppm based on our current experiment is predicted.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 6, 2007
Revised Manuscript: January 15, 2008
Manuscript Accepted: January 29, 2008
Published: March 18, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Nicolas Gayraud, Łukasz W. Kornaszewski, James M. Stone, Jonathan C. Knight, Derryck T. Reid, Duncan P. Hand, and William N. MacPherson, "Mid-infrared gas sensing using a photonic bandgap fiber," Appl. Opt. 47, 1269-1277 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. J. H. Visser and R. E. Soltis, “Automotive exhaust gas sensing systems,” IEEE Trans. Instrum. Meas. 50, 1543-1550 (2001). [CrossRef]
  2. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta Part A 60, 3259-3268 (2004). [CrossRef]
  3. J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85, 323-328 (2006). [CrossRef]
  4. G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A Pure Appl. Opt. 5, S140-S145 (2003). [CrossRef]
  5. H. K. Jones and J. Elgy, “Remote sensing to assess landfill gas migration,” Waste Manage. Res. 12, 327-337 (1994).
  6. U. Willer, D. Sheel, I. Kostjucenko, C. Bohling, W. Schade, and E. Faber, “Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics,” Spectrochim. Acta Part A 58, 2427-2432(2002). [CrossRef]
  7. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B 38-39, 42-47 (1997). [CrossRef]
  8. F. A. Muhammad, H. S. Al-Raweshidy, and J. M. Senior, “Compensation for surface contamination with D-fibre sensor,” Sensor Actuators B 40, 59-63 (1997). [CrossRef]
  9. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. Optoelectron. 150, 306-309 (2003). [CrossRef]
  10. G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sensor Actuators B 51, 227-232 (1998). [CrossRef]
  11. J. Mulrooney, J. Clifford, C. Fitzpatrick, and E. Lewis, “Detection of carbon dioxide emissions from a diesel engine using mid-infrared optical fibre based sensor,” Sensor Actuators A 136, 104-110 (2007). [CrossRef]
  12. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8-9 (2002). [CrossRef]
  13. J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov, “Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers,” Appl. Phys. Lett. 89 (19), 191115 (2006). [CrossRef]
  14. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” Chalcogenide Lett. 1 (1), 11-15 (2004).
  15. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984). [CrossRef]
  16. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873-883(2002). [CrossRef]
  17. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  18. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999). [CrossRef] [PubMed]
  19. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  20. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  21. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  22. N. Gayraud, J. M. Stone, W. N. MacPherson, J. D. Shephard, R. R. J. Maier, J. C. Knight, D. P. Hand, and J. D. C. Jones, “Mid infra-red gas sensing using a hollow-core photonic bandgap fibre,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThA5.
  23. J. D. Shephard, W. N. MacPherson, R. R. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139-7144(2005). [CrossRef] [PubMed]
  24. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  25. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85, 3366-3368(2004). [CrossRef]
  26. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408-S414 (2005). [CrossRef]
  27. P. St. J. Russel, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef]
  28. F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London A 364, 3439-3462 (2006). [CrossRef]
  29. K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12 (3), 394-400 (2004). [CrossRef] [PubMed]
  30. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005). [CrossRef]
  31. R. A. Serway, Physics for Scientists and Engineers (Holt-Saunders International, 1982).
  32. J. Crank, The Mathematics of Diffusion (Clarendon, 1975).
  33. D. R. Lide, Handbook of Chemistry and Physics, 74th ed. (CRC Press, 1993-1994).
  34. J. P. Carvalho, K. Magalhães, O. V. Ivanov, O. Frazão, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Evaluation of coupling losses in hollow-core photonic crystal fibres,” Proc. SPIE 6619, 66191V (2007).
  35. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690-6695(2007). [CrossRef] [PubMed]
  36. R. G. Livesey, “Flow of gases through tubes and orifices,” in Foundations of Vacuum Science and Technology, J. M. Lafferty, ed. (Wiley, 1998), pp. 81-140.
  37. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, and H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photonic Technol. Lett. 3, 86-87 (1991). [CrossRef]
  38. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited