OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: 1–6

Dynamic response of ferrofluidic deformable mirrors

Jocelyn Parent, Ermanno F. Borra, Denis Brousseau, Anna M. Ritcey, Jean-Philippe Déry, and Simon Thibault  »View Author Affiliations

Applied Optics, Vol. 48, Issue 1, pp. 1-6 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ferrofluids can be used to make deformable mirrors having highly interesting characteristics (e.g., extremely large strokes and low costs). Until recently, such mirrors were thought to be restricted to corrections of frequencies lower than 10 Hz , thus limiting their usefulness. We present counterintuitive results that demonstrate that the limiting operational frequency can be increased by increasing the viscosity of the ferrofluid. We tested the response of ferrofluids having viscosities as high as 494 cP , finding that they could allow an adaptive optics correction frequency as high as 900 Hz . We also demonstrate that we can counter the amplitude loss due to the high viscosity by overdriving the actuators. The overdriving technique combines high current, short duration pulses with ordinary driving step functions to deform the mirror. The integration of a FDM in a complete closed-loop adaptive optics system running at about 500 Hz thus appears to be a realistic goal in the near future.

© 2008 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(230.3810) Optical devices : Magneto-optic systems
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: September 11, 2008
Manuscript Accepted: November 4, 2008
Published: December 11, 2008

Jocelyn Parent, Ermanno F. Borra, Denis Brousseau, Anna M. Ritcey, Jean-Philippe Déry, and Simon Thibault, "Dynamic response of ferrofluidic deformable mirrors," Appl. Opt. 48, 1-6 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Hickson and M. K. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35-42 (1998). [CrossRef]
  2. R. Cabanac and E. F. Borra, “A search for peculiar objects with the NASA Orbital Debris Observatory 3 m Liquid Mirror Telescope,” Astrophys. J. 509, 309-323 (1998). [CrossRef]
  3. R. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, and S. Flatt, “Lidar measurements taken with a large aperture liquid mirror: 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925-6936 (1995). [CrossRef] [PubMed]
  4. R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421-1424 (1997). [CrossRef]
  5. R. J. Sica and T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I,” J. Atmos. Sci. 56, 1308-1329 (1999). [CrossRef]
  6. E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, and E. Boily, “Liquid mirrors: Optical shop tests and contributions to the technology,” Astrophys. J. 393, 829-847 (1992). [CrossRef]
  7. H. W. Babcock, “Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953). [CrossRef]
  8. R. Ragazzoni and E. Marchetti, “A liquid adaptive mirror,” Astron. Astrophys. 283, L17-L19 (1994).
  9. E. M. Vuelban, N. Bhattacharya, and J. J. M. Braat, “Liquid deformable mirror for high-order wavefront correction,” Opt. Lett. 31, 1717-1719 (2006). [CrossRef] [PubMed]
  10. P. Laird, E. F. Borra, R. Bergamasco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493-1501 (2004). [CrossRef]
  11. D. Brousseau, E. F. Borra, and S. Thibault, “Wavefront correction with a 37-actuator ferrofluid deformable mirror,” Opt. Express 15, 18190-18199 (2007). [CrossRef] [PubMed]
  12. J. Gingras, J-P. Déry, H. Yockell-Lelièvre, E. F. Borra, and A M. Ritcey, “Surface films of silver nanoparticles for new liquid mirrors,” Colloids Surf. A 279, 79-86 (2006). [CrossRef]
  13. L. Faucher, E. F. Borra, and A. M. Ritcey, “Use of thiols as protecting ligands in reflective surface films of silver nanoparticles,” J. Nanosci. Nanotechnol. 8, 3900-3908(2008). [CrossRef] [PubMed]
  14. R. E. Rosensweig, Ferrohydrodynamics (Dover, 1997).
  15. D. Brousseau, E. F. Borra, H. Jean-Ruel, J. Parent, and A. Ritcey, “A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations,” Opt. Express 14, 11486-11493 (2006). [CrossRef] [PubMed]
  16. M. Rioux, “Miroirs déformables à base de ferrofluides,” Master's thesis (Université Laval, 2006).
  17. R. K. Tyson, Principles of Adaptive Optics (Academic, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited