OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: 106–113

Continuous-wave theory of Yb:YAG end-pumped thin-disk lasers

Ahmad Khayat Jafari and Mehdi Aas  »View Author Affiliations

Applied Optics, Vol. 48, Issue 1, pp. 106-113 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fundamental principles of the operation of a thin-disk laser are presented. We derived equations from a set of coupled rate equations that predict that the characteristics of a laser are affected by the Boltzmann occupation factors of the pump and the laser states simultaneously. The model is used to investigate the influence of the effective parameters on the operational efficiency of an end-pumped Yb:YAG disk laser. Based on our results, we examined laser output power as a function of output coupler reflectivity, crystal thickness or doping concentration, number of the pump beam passes, and temperature.

© 2008 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 5, 2008
Revised Manuscript: November 2, 2008
Manuscript Accepted: November 14, 2008
Published: December 19, 2008

Ahmad Khayat Jafari and Mehdi Aas, "Continuous-wave theory of Yb:YAG end-pumped thin-disk lasers," Appl. Opt. 48, 106-113 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994). [CrossRef]
  2. K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, C. Stewen, and A. Voss, “Simulations of the lasing properties of a thin-disk laser combining high-output powers with good beam quality,” Proc. SPIE 2989, 23-34 (1997). [CrossRef]
  3. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999). [CrossRef]
  4. A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305-344(2004). [CrossRef]
  5. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007). [CrossRef]
  6. W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).
  7. P. Peterson, A. Gavrielides, and P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282-287 (1994). [CrossRef]
  8. R. J. Beach, “CW theory of quasi-three-level end-pumped laser oscillators,” Opt. Commun. 123, 385-393 (1996). [CrossRef]
  9. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997). [CrossRef] [PubMed]
  10. C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311(2002). [CrossRef]
  11. O. Casagrande, N. Deguil-Robin, B. Le Garrec, and G. L. Bourdet, “Time and spectrum resolved model for quasi-three-level gain-switched lasers,” IEEE J. Quantum Electron. 43, 206-212 (2007). [CrossRef]
  12. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487-2492 (1965). [CrossRef]
  13. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb+3 ions,” Zh. Eksp. Teor. Fiz. 69, 860 (1975) [Sov. Phys. JETP 42, 440-446 (1975)].
  14. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997). [CrossRef]
  15. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010-2019 (1998). [CrossRef]
  16. D. W. Hall, M. J. Weber, and R. T. Brundage, “Fluorescence line narrowing in neodymium laser glasses,” J. Appl. Phys. 55, 2642-2648 (1984). [CrossRef]
  17. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412-1423 (1988). [CrossRef]
  18. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B. 20, 1975-1979 (2003). [CrossRef]
  19. Q. Liu ,X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24, 2081-2089 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited