OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: 22–27

More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method

Hong Shu, Sergiy Mokhov, Boris Ya. Zeldovich, and Michael Bass  »View Author Affiliations


Applied Optics, Vol. 48, Issue 1, pp. 22-27 (2009)
http://dx.doi.org/10.1364/AO.48.000022


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

© 2008 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.7330) Holography : Volume gratings
(230.1480) Optical devices : Bragg reflectors
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optical Devices

History
Original Manuscript: September 10, 2008
Revised Manuscript: November 17, 2008
Manuscript Accepted: November 19, 2008
Published: December 17, 2008

Citation
Hong Shu, Sergiy Mokhov, Boris Ya. Zeldovich, and Michael Bass, "More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method," Appl. Opt. 48, 22-27 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-1-22


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt. 17, 1757-1759(1978). [CrossRef] [PubMed]
  2. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly polarized operation of a cladding-pumped Yb fiber laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507-9512 (2008). [CrossRef] [PubMed]
  3. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384-386 (2008). [CrossRef] [PubMed]
  4. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008). [CrossRef] [PubMed]
  5. T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33, 881-883 (2008). [CrossRef] [PubMed]
  6. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33, 1204-1206 (2008). [CrossRef] [PubMed]
  7. D. Yevick and L. Thylen, “Analysis of gratings by the beam-propagation method,” J. Opt. Soc. Am. 72, 1084-1089 (1982). [CrossRef]
  8. S. Ahmed and E. N. Glytsis, “Comparison of beam propagation method and rigorous coupled-wave analysis for single and multiplexed volume gratings,” Appl. Opt. 35, 4426-4435(1996). [CrossRef] [PubMed]
  9. P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24, 675-676 (1988). [CrossRef]
  10. H. L. Rao, R. Scarmozzino, and R. M. Osgood Jr., “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photon. Technol. Lett. 11, 830-832 (1999). [CrossRef]
  11. Y. Y. Lu and S. H. Wei, “A new iterative bidirectional beam propagation method,” IEEE Photon. Technol. Lett. 14, 1533-1535 (2002). [CrossRef]
  12. H. El-Refaei, D. Yevick, and I. Betty, “Stable and noniterative bidirectional beam propagation method,” IEEE Photon. Technol. Lett. 12, 389-391 (2000).
  13. P. L. Ho and Y. Y. Lu, “A stable bidirectional propagation method based on scattering operators,” IEEE Photon. Technol. Lett. 13, 1316-1318 (2001). [CrossRef]
  14. J. Hong, W. P. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860-1868 (1992). [CrossRef]
  15. H. Shu and M. Bass, “Modeling the reflection of a laser beam by a deformed highly reflective volume Bragg grating,” Appl. Opt. 46, 2930-2938 (2007). [CrossRef] [PubMed]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, pages 2909-2947 (1969).
  17. L. B. Glebov, J. Lumeau, S. Mokhov, V. Smirnov, and B. Y. Zeldovich, “Reflection of light by composite volume holograms: Fresnel corrections and Fabry-Perot spectral filtering,” J. Opt. Soc. Am. A 25, 751-764 (2008). [CrossRef]
  18. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613-623 (1985).
  19. H. Shu, “Analytic and numeric modeling of diode laser pumped Yb:YAG laser oscillators and amplifiers,” Ph.D. dissertation (University of Central Florida, 2003).
  20. H. Shu and M. Bass, “Three-dimensional computer model for simulating realistic solid-state lasers,” Appl. Opt. 46, 5687-5697 (2007). [CrossRef] [PubMed]
  21. V. Mizrahi and J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. , 11, 1513-1517(1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited