OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: 28–36

Combined reconstruction of fluorescent and optical parameters using time-resolved data

Vadim Y. Soloviev, Cosimo D’Andrea, Gianluca Valentini, Rinaldo Cubeddu, and Simon R. Arridge  »View Author Affiliations

Applied Optics, Vol. 48, Issue 1, pp. 28-36 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (775 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an algorithm for simultaneous reconstruction of optical parameters, quantum yield, and lifetime in turbid media with embedded fluorescent inclusions. This algorithm is designed in the Fourier domain as an iterative solution of a system of differential equations of the Helmholtz type and does not involve full ill-conditioned matrix computations. The approach is based on allowing the unknown optical parameters, quantum yield, and lifetime to depend on the Fourier spectral parameter. The algorithm was applied to a time-gated experimental data set acquired by imaging a highly scattering cylindrical phantom concealing small fluorescent tubes. Relatively accurate reconstruction demonstrates the potential of the method.

© 2008 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 18, 2008
Revised Manuscript: November 13, 2008
Manuscript Accepted: November 14, 2008
Published: December 17, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Vadim Y. Soloviev, Cosimo D'Andrea, Gianluca Valentini, Rinaldo Cubeddu, and Simon R. Arridge, "Combined reconstruction of fluorescent and optical parameters using time-resolved data," Appl. Opt. 48, 28-36 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  2. S. V. Patwardhan, S. R. Bloch, S. Achhilefu, and J. P. Culver “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13, 2564-2577 (2005). [CrossRef] [PubMed]
  3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Plenum, 1999).
  4. R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61-R76 (2002). [CrossRef]
  5. R. Loudon, The Quantum Theory of Light (Oxford U. Press, 1983).
  6. V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  8. A. D. Kim and M. Moscoso, “Beam propagation in sharply peaked forward scattering media,” J. Opt. Soc. Am. A 21, 797-803 (2004). [CrossRef]
  9. V. Y. Soloviev and L. V. Krasnosselskaia, “Consideration of a spread out source in problems of near infrared optical tomography,” Appl. Opt. 45, 4765-4775 (2006). [CrossRef] [PubMed]
  10. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007). [CrossRef] [PubMed]
  11. L. Zhang, F. Gao, H. He, and H. Zhao, “Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express 16, 7214-7223 (2008). [CrossRef] [PubMed]
  12. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109-7124 (2006). [CrossRef] [PubMed]
  13. A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33, 470-472 (2008). [CrossRef] [PubMed]
  14. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006). [CrossRef] [PubMed]
  15. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30, 3347-3349 (2005). [CrossRef]
  16. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M.A. A. Neil, P.M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time gated data acquisition,” Appl. Opt. 46, 7384-7391 (2007). [CrossRef] [PubMed]
  17. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. W. French, “Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence,” Opt. Lett. 32, 2034-2036 (2007). [CrossRef] [PubMed]
  18. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  19. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14, 6516-6534 (2006). [CrossRef] [PubMed]
  20. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. A. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16, 5048-5060 (2008). [CrossRef] [PubMed]
  21. G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33, 1744-1746 (2008). [CrossRef] [PubMed]
  22. J. Ripoll and V. Ntziachristos, “From finite to infinite volumes: removal of boundaries in diffuse wave imaging,” Phys. Rev. Lett. 96, 173903 (2006). [CrossRef] [PubMed]
  23. J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, “Fully adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue,” Opt. Express 15, 6955-6975 (2007). [CrossRef] [PubMed]
  24. A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection,” Med. Phys. 33, 1299-1310(2006). [CrossRef] [PubMed]
  25. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  26. S. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213-226(1998). [CrossRef] [PubMed]
  27. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  28. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique,” Opt. Lett. 31, 471-473 (2006). [CrossRef] [PubMed]
  29. O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl. 22, R67-R131 (2006). [CrossRef]
  30. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “Fluorescence lifetime imaging with picosecond resolution for biomedical applications,” Opt. Lett. 23, 810-812 (1998). [CrossRef]
  31. C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675-1681 (2003). [CrossRef]
  32. M. Tadi, “Inverse heat conduction based on boundary measurement,” Inverse Probl. 13, 1585-1605 (1997). [CrossRef]
  33. V. Y. Soloviev, C. D'Andrea, M. Brambilla, G. Valentini, R. B. Schulz, R. Cubeddu, and S. R. Arridge, “Adjoint time domain method for fluorescence imaging in turbid media,” Appl. Opt. 47, 2303-2311 (2008). [CrossRef] [PubMed]
  34. J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91, 103901 (2003). [CrossRef] [PubMed]
  35. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44, 2104-2114 (2005). [CrossRef] [PubMed]
  36. A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482-14487 (2007). [CrossRef] [PubMed]
  37. V. Y. Soloviev and L. V. Krasnosselskaia, “Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography,” Appl. Opt. 45, 2828-2837 (2006). [CrossRef] [PubMed]
  38. V. Y. Soloviev, “Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging,” Med. Phys. 33, 4176-4183(2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited