OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: 91–98

Feasibility study of the iterative x-ray phase retrieval algorithm

Fanbo Meng, Hong Liu, and Xizeng Wu  »View Author Affiliations


Applied Optics, Vol. 48, Issue 1, pp. 91-98 (2009)
http://dx.doi.org/10.1364/AO.48.000091


View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An iterative phase retrieval algorithm was previously investigated for in-line x-ray phase imaging. Through detailed theoretical analysis and computer simulations, we now discuss the limitations, robustness, and efficiency of the algorithm. The iterative algorithm was proved robust against imaging noise but sensitive to the variations of several system parameters. It is also efficient in terms of calculation time. It was shown that the algorithm can be applied to phase retrieval based on one phase-contrast image and one attenuation image, or two phase-contrast images; in both cases, the two images can be obtained either by one detector in two exposures, or by two detectors in only one exposure as in the dual-detector scheme.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(340.7440) X-ray optics : X-ray imaging

ToC Category:
Image Processing

History
Original Manuscript: September 25, 2008
Manuscript Accepted: November 6, 2008
Published: December 19, 2008

Citation
Fanbo Meng, Hong Liu, and Xizeng Wu, "Feasibility study of the iterative x-ray phase retrieval algorithm," Appl. Opt. 48, 91-98 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-1-91


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, and S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173-3176 (1995). [CrossRef] [PubMed]
  2. A. Snigirev and I. Snigireva, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486-5492 (1995). [CrossRef]
  3. K. A. Nugent, T. E. Gureyev, and D. F. Cookson, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961-2964 (1996). [CrossRef] [PubMed]
  4. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335-338 (1996). [CrossRef]
  5. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774-2782 (1997). [CrossRef]
  6. F. Arfelli, M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. D. Palma, M. D. Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, “Low-dose phase contrast x-ray medical imaging,” Phys. Med. Biol. 43, 2845-2852 (1998). [CrossRef] [PubMed]
  7. C. J. Kotre and I. P. Birch, “Phase contrast enhancement of x-ray mammography: a design study,” Phys. Med. Biol. 44, 2853-2866 (1999). [CrossRef] [PubMed]
  8. P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. V. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912-2914 (1999). [CrossRef]
  9. F. Arfelli, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palma, M. Di Michiel, M. Fabrizioli, R. Longo, R. H. Menk, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, M. Ratti, L. Rigon, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, “Mammography with synchrotron radiation: phase-detection techniques,” Radiology 215, 286-293 (2000).
  10. E. F. Donnelly and R. R. Price, “Quantification of the effect of kVp on edge-enhancement index in phase-contrast radiography,” Med. Phys. 29, 999-1002 (2002). [CrossRef] [PubMed]
  11. H. Ohara, C. Honda, A. Ishisaka, and F. Shimada, “Image quality in digital phase contrast imaging using a tungsten anode x-ray tube with small focal-spot size,” Proc. SPIE 4682, 713-723 (2002). [CrossRef]
  12. E. F. Donnelly, R. R. Price, and D. R. Pickens, “Dual focal-spot imaging for phase extraction in phase-contrast radiography,” Med. Phys. 30, 2292-2296 (2003). [CrossRef] [PubMed]
  13. E. F. Donnelly, R. R. Price, and D. R. Pickens, “Quantification of the effect of system and object parameters on edge enhancement in phase-contrast radiography,” Med. Phys. 30, 2888-2896 (2003). [CrossRef] [PubMed]
  14. M. T. Freedman, S.-C. B. Lo, C. Honda, E. Makariou, G. Sisney, E. Pien, H. Ohara, A. Ishisaka, and F. Shimada, “Phase contrast digital mammography using molybdenum x-ray: clinical implications in detectability improvement,” Proc. SPIE 5030, 533-540 (2003). [CrossRef]
  15. X. Wu, A. E. Deans, and H. Liu, Biomedical Photonics Handbook (CRC Press, 2003), Chap. 26.
  16. X. Wu and H. Liu, “A general theoretical formalism for x-ray phase contrast imaging,” J. X-Ray Sci. Technol. 11, 33-42(2003).
  17. X. Wu and H. Liu, “Clinical implementation of x-ray phase-contrast imaging: theoretical foundations and design considerations,” Med. Phys. 30, 2169-2179 (2003). [CrossRef] [PubMed]
  18. T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068,103 (2004). [CrossRef]
  19. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573-3583 (2004). [CrossRef] [PubMed]
  20. X. Wu and H. Liu, “A dual detector approach for x-ray attenuation and phase imaging,” J. X-Ray Sci. Technol. 12, 35-42(2004).
  21. X. Wu and H. Liu, “A new theory of phase-contrast x-ray imaging based on Wigner distributions,” Med. Phys. 31, 2378-2384 (2004). [CrossRef] [PubMed]
  22. X. Wu and H. Liu, “An experimental method of determining relative phase-contrast factor for x-ray imaging systems,” Med. Phys. 31, 997-1002 (2004). [CrossRef]
  23. E. F. Donnelly, R. R. Price, and D. R. Pickens, “Experimental validation of the Wigner distributions theory of phase-contrast imaging,” Med. Phys. 32, 928-931 (2005). [CrossRef] [PubMed]
  24. R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum. 76, 083701 (2005). [CrossRef]
  25. X. Wu and H. Liu, “Phase-space formulation for phase-contrast x-ray imaging,” Appl. Opt. 44, 5847-5854 (2005). [CrossRef] [PubMed]
  26. X. Wu and H. Liu, “X-Ray cone-beam phase tomography formulas based on phase-attenuation duality,” Opt. Express 13, 6000-6014 (2005). [CrossRef] [PubMed]
  27. X. Wu, H. Liu, and A. M. Yan, “X-ray phase-attenuation duality and phase retrieval,” Opt. Lett. 30, 379-381(2005). [CrossRef] [PubMed]
  28. T. Q. Xiao, A. Bergamaschi, D. Dreossi, R. Longo, A. Olivo, S. Pani, L. Rigon, T. Rokvic, C. Venanzi, and E. Castelli, “Effect of spatial coherence on application of in-line phase contrast imaging to synchrotron radiation mammography,” Nucl. Instrum. Methods Phys. Res. A 548, 155-162 (2005). [CrossRef]
  29. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76, 073,705 (2005). [CrossRef]
  30. P. Cloetens, R. Mache, M. Schlenker, and S. Lerbs-Mache, “Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network,” Proc. Natl. Acad. Sci. USA 103, 14,626-14,630 (2006). [CrossRef]
  31. A. Olivo and R. Speller, “Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system,” Phys. Med. Biol. 51, 3015-3030 (2006). [CrossRef] [PubMed]
  32. F. B. Meng, A. Yan, G. Zhou, X. Wu, and H. Liu, “Development of a dual-detector X-ray imaging system for phase retrieval study,” Nucl. Instrum. Methods Phys. Res. B 254, 300-306(2007). [CrossRef]
  33. J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region.” Opt. Lett. 32, 1617-1619 (2007). [CrossRef] [PubMed]
  34. B. D. Arhatari, K. A. Nugent, A. G. Peele, and J. Thornton, “Phase contrast radiography. II. Imaging of complex objects,” Rev. Sci. Instrum. 76, 113, 704 (2005). [CrossRef]
  35. T. E. Gureyev, Y. L. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun. 259, 569-580 (2006). [CrossRef]
  36. F. B. Meng, H. Liu, and X. Wu, “An iterative phase retrieval algorithm for in-line x-ray phase imaging,” Opt. Express 15, 8383-8390 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited