OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: A13–A29

Target-in-the-loop wavefront sensing and control with a Collett–Wolf beacon: speckle-average phase conjugation

Mikhail A. Vorontsov, Valeriy V. Kolosov, and Ernst Polnau  »View Author Affiliations

Applied Optics, Vol. 48, Issue 1, pp. A13-A29 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1033 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive optical systems for laser beam projection onto an extended target embedded in an optically inhomogeneous medium are considered. A new adaptive optics wavefront control technique—speckle-average (SA) phase conjugation—is introduced. In this technique mitigation of speckle effects related to laser beam scattering off the rough target surface is achieved by measuring the SA wavefront slopes of the target return wave using a conventional Shack–Hartmann wavefront sensor. For statistically representative speckle averaging we consider the generation of an incoherent light source, referred to here as a Collett–Wolf beacon, directly on the target surface using a rapid steering (scanning) auxiliary laser beam. Our numerical simulations and experiment show that control of the outgoing beam phase using SA phase conjugation can lead to efficient compensation of turbulence effects and results in an increase of the projected laser beam power density on a remote extended target. The impact of both target anisoplanatism and the Collett–Wolf beacon size on adaptive system performance is studied.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(140.3290) Lasers and laser optics : Laser arrays
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3298) Lasers and laser optics : Laser beam combining

Original Manuscript: June 9, 2008
Revised Manuscript: August 27, 2008
Manuscript Accepted: September 11, 2008
Published: October 27, 2008

Mikhail A. Vorontsov, Valeriy V. Kolosov, and Ernst Polnau, "Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation," Appl. Opt. 48, A13-A29 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Hardy, eds., Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  2. M. A. Vorontsov, A. V. Koriabin, and V. I. Shmalhauzen, eds., Controlling Optical Systems (Nauka, 1988).
  3. B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, eds., Principles of Phase Conjugation (Springer, 1985).
  4. R. A. Fisher, ed., Optical Phase Conjugation (Academic, 1983).
  5. R. K. Tyson, ed., Principles of Adaptive Optics (Academic, 1991).
  6. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am . 61, 492-495 (1971). [CrossRef]
  7. M. A. Vorontsov, V. V. Kolosov, and A. Kohnle, “Adaptive laser beam projection on an extended target: phase- and field-conjugate precompensation,” J. Opt. Soc. Am. A 24, 1975-1993 (2007). [CrossRef]
  8. N. V. Vysotina, N. N. Rozanov, V. E. Semenov, and V. A. Smirnov, “Amplitude-phase adaptive control over optically inhomogeneous paths with deformable mirrors,” Izv. Vysshikh Uchebnykh Zavedenii, Fizika 11, 42-50 (1985).
  9. J. D. Barchers, “Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations,” J. Opt. Soc. Am. A 19, 926-945 (2002). [CrossRef]
  10. T. R. O'Meara, “The multidither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306-315 (1977). [CrossRef]
  11. R. A. Miller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200-1210 (1974). [CrossRef]
  12. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A. 13, 1456-1466 (1996). [CrossRef]
  13. P. Piatrou and M. Roggemann, “Beaconless stochastic parallel gradient descent laser beam control: numerical experiments,” Appl. Opt. 46, 6831-6842 (2007). [CrossRef] [PubMed]
  14. M. A. Vorontsov and V. I. Shmalhauzen, eds., Principles of Adaptive Optics (Nauka, 1985).
  15. N. C. Mehta and C. W. Allen, “Dynamic compensation of atmospheric turbulence with far-field optimization,” J. Opt. Soc. Am. A 11, 434-443 (1994). [CrossRef]
  16. S. A. Kokorowski, M. E. Pedinoff, and J. E. Pearson, “Analytical, experimental, and computer simulation results on interactive effects of speckle with multidither adaptive optics systems,” J. Opt. Soc. Am. 67, 333-345 (1977). [CrossRef]
  17. M. A. Vorontsov, V. N. Karnaukhov, A. L. Kuz'minskii, and V. I. Shmalhauzen, “Speckle effects in adaptive optical systems,” Sov. J. Quantum Electron. 14, 761-766 (1984). [CrossRef]
  18. V. V. Dudorov, M. A. Vorontsov, and V. V. Kolosov, “Speckle-field propagation in “frozen” turbulence: brightness function approach,” J. Opt. Soc. Am. A 23, 1924-1936 (2006). [CrossRef]
  19. J. E. Pearson, S. A. Kokorowski, and M. E. Pedinoff, “Effects of speckle in adaptive optical systems,” J. Opt. Soc. Am. 66, 1261-1267 (1976). [CrossRef]
  20. M. A. Vorontsov and G. W. Carhart, “Adaptive phase distortion correction in strong speckle-modulation conditions,” Opt. Lett. 27, 2155-2157 (2002). [CrossRef]
  21. M. A. Vorontsov and V. Kolosov, “Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing,” J. Opt. Soc. Am. A 22, 126-141 (2005). [CrossRef]
  22. R. R. Parenti and R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11, 288-309(1994). [CrossRef]
  23. D. L. Fried and J. F. Belsher, “Analysis of fundamental limits of artificial-guide-star adaptive-optics system performance for astronomical imaging,” J. Opt. Soc. Am. A. 11, 277-287 (1994). [CrossRef]
  24. N. Ageorges and C. Dainty, eds., Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, 2000).
  25. E. Collett and E. Wolf, “Is complete coherence necessary for generation of highly directional light-beams?” Opt. Lett. 2, 27-29 (1978). [CrossRef] [PubMed]
  26. L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  27. F. Gori, “Mode propagation of the field generated by Collett-Wolf Schell-model sources,” Opt. Commun. 46, 149-154(1983). [CrossRef]
  28. G. Rousset, “Wave-front sensors,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge University Press, 1999), pp. 91-130. [CrossRef]
  29. We assume here that the obtained vector-function α(r,t) represents a path-independent vector field (at least at compact areas of receiver aperture).
  30. M. C. Rytov, Yu A. Kravtsov, and V. I. Tatarskii, eds., Principles of Statistical Radiophysics 4, Wave Propagation Through Random Media (Springer-Verlag, 1989).
  31. F. G. Bass and I. M. Fuks, eds., Wave Scattering from Statistically Rough Surfaces (Pergamon, 1979).
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  33. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  34. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427-1435 (1965). [CrossRef]
  35. J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1984).
  36. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A , 15, 2759-2768 (1998). [CrossRef]
  37. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC Press, 1996).
  38. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52-61 (1982). [CrossRef]
  39. B. M. Welsh and C. S. Gardner, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69-80 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited