OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 1 — Jan. 1, 2009
  • pp: A5–A12

Sub-aperture piston phase diversity for segmented and multi-aperture systems

Matthew R. Bolcar and James R. Fienup  »View Author Affiliations


Applied Optics, Vol. 48, Issue 1, pp. A5-A12 (2009)
http://dx.doi.org/10.1364/AO.48.0000A5


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase diversity is a method of image-based wavefront sensing that simultaneously estimates the unknown phase aberrations of an imaging system along with an image of the object. To perform this estimation a series of images differing by a known aberration, typically defocus, are used. In this paper we present a new method of introducing the diversity unique to segmented and multi-aperture systems in which individual segments or sub-apertures are pistoned with respect to one another. We compare this new diversity with the conventional focus diversity.

© 2008 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(100.5070) Image processing : Phase retrieval
(110.6770) Imaging systems : Telescopes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

History
Original Manuscript: June 2, 2008
Manuscript Accepted: July 7, 2008
Published: September 24, 2008

Citation
Matthew R. Bolcar and James R. Fienup, "Sub-aperture piston phase diversity for segmented and multi-aperture systems," Appl. Opt. 48, A5-A12 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-1-A5


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. TPF Science Working Group, Terrestrial Planet Finder Interferometer: Science Working Group Report, P. R. Lawson, O. P. Lay, K. J. Johnston, and C. A. Beichman, eds., JPL Publication 07-01 (Jet Propulsion Laboratory, 2007).
  2. J. T. Pitman, A. Duncan, D. Stubbs, R. D. Sigler, R. L. Kendrick, E. H. Smith, J. E. Mason, G. Delory, J. H. Lipps, M. Manga, J. R. Graham, I. de Pater, S. Reiboldt, P. Marcus, E. Bierhaus, J. B. Dalton, J. R. Fienup, and J. W. Yu, “Multiple Instrument Distributed Aperture Sensor (MIDAS) for planetary remote sensing,” Proc. SPIE 5660, 168-180(2004).
  3. R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32-39 (1979).
  4. R. G. Paxman and J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914-923 (1988).
  5. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072-1085 (1992).
  6. R. G. Paxman and J. H. Seldin, “Fine-resolution astronomical imaging with phase-diverse speckle,” Proc. SPIE 2029, 287-298 (1993).
  7. M. R. Bolcar and J. R. Fienup, “Phase diversity with broadband illumination,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA6.
  8. M. R. Bolcar and J. R. Fienup, “Method of phase diversity in multi-aperture systems utilizing individual sub-aperture control,” Proc. SPIE 5896, 58960G (2005).
  9. S. T. Thurman and J. R. Fienup, “Multi-aperture Fourier transform imaging spectroscopy: theory and imaging properties,” Opt. Express 13, 2160-2175 (2005).
  10. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2004).
  11. D. J. Lee, M. C. Roggemann, B. M. Welsh, and E. R. Crosby, “Evaluation of least-squares phase-diversity techniques for space telescope wave-front sensing,” Appl. Opt. 36, 9186-9197 (1997).
  12. O. M. Bucci, A. Capozzoli, and G. D'Elia, “Regularizing strategy for image restoration and wave-front sensing by phase diversity,” J. Opt. Soc. Am. A 16, 1759-1768 (1999). [CrossRef]
  13. M. G. Löfdahl and G. B. Scharmer, “Phase diverse speckle inversion applied to data from the Swedish 1-meter solar telescope,” Proc. SPIE 4853, 567-575 (2002).
  14. A. Blanc, L. Mugnier, and J. Idier, “Marginal estimation of aberrations and image restoration by use of phase diversity,” J. Opt. Soc. Am. A 20, 1035-1045 (2003). [CrossRef]
  15. J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, multiple telescope array using broad-band phase diversity,” Proc. SPIE 4091, 48-63 (2000).
  16. Provided through the courtesy of Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (http://aviris.jpl.nasa.gov/).
  17. R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express 15, 15935-15951 (2007).
  18. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156-158 (2008). [CrossRef]
  19. L. P. Yaroslavsky and H. J. Caulfield, “Deconvolution of multiple images of the same object,” Appl. Opt. 33, 2157-2162 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited