OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: 1797–1803

Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator

Chengkuo Lee and Jayaraj Thillaigovindan  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. 1797-1803 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present in-depth discussion of the design and optimization of a nanomechanical sensor using a silicon cantilever comprising a two-dimensional photonic crystal (PC) nanocavity resonator arranged in a U-shaped silicon PC waveguide. For example, the minimum detectable strain, vertical deflection at the cantilever end, and force load are observed as 0.0133%, 0.37 μm , and 0.0625 μN , respectively, for a 30 μm long and 15 μm wide cantilever. In the graph of strain versus resonant wavelength shift, a rather linear relationship is observed for various data derived from different cantilevers. Both the resonant wavelength and the resonant wavelength shift of cantilevers under deformation or force loads are mainly a function of defect length change. Results point out that all these mechanical parameters are mainly dependent on the defect length of the PC nanocavity resonator. This new PC cantilever sensor shows promising linear characteristics as an optical nanomechanical sensor.

© 2009 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.4685) Optical devices : Optical microelectromechanical devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:

Original Manuscript: November 11, 2008
Manuscript Accepted: January 30, 2009
Published: March 23, 2009

Chengkuo Lee and Jayaraj Thillaigovindan, "Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator," Appl. Opt. 48, 1797-1803 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.-C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005). [CrossRef]
  2. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005). [CrossRef]
  3. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202-208 (2007). [CrossRef]
  4. K. Takahashi, Y. Kanamori, and K. Hane, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 23-24. [CrossRef]
  5. M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18, 358-360 (2006). [CrossRef]
  6. A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita, and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices,” IEICE Electron. Express 3, 39-43 (2006). [CrossRef]
  7. S. Jun and Y.-S. Cho, “Deformation-induced bandgap tuning of 2D silicon-based photonic crystals,” Opt. Express 11, 2769-2774 (2003). [CrossRef] [PubMed]
  8. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003). [CrossRef]
  9. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005). [CrossRef]
  10. O. Levy, B. Z. Steinberg, N. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86, 104102 (2005). [CrossRef]
  11. Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, “Micro displacement sensor based on line-defect resonant cavity in photonic crystal,” Opt. Express 14, 298-305 (2006). [CrossRef] [PubMed]
  12. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). [CrossRef]
  13. C. Lee, R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, “Design and modeling of a nanomechanical sensor using silicon photonic crystals,” J. Lightwave Technol. 26, 839-846 (2008). [CrossRef]
  14. D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, “A high-sensitivity micromachined biosensor,” Proc. IEEE 85, 672-680 (1997). [CrossRef]
  15. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75, 2229-2253 (2004). [CrossRef]
  16. C. Ziegler, “Cantilever-based biosensors,” Anal. Bioanal. Chem. 379, 946-959 (2004). [CrossRef] [PubMed]
  17. R. Raiteri, M. Grattarola, H.-J. Butt, and Petr Skladal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115-126 (2001). [CrossRef]
  18. Z. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys. 90, 427-431 (2001). [CrossRef]
  19. G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045-1047 (1988). [CrossRef]
  20. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834-836 (1993). [CrossRef]
  21. T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnol. 4, 218-224 (1993). [CrossRef]
  22. C. Lee, T. Itoh, R. Maeda, and T. Suga, “Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy,” Rev. Sci. Instrum. 68, 2091-2100 (1997). [CrossRef]
  23. C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities,” Sens. Actuators A 72, 179-188 (1999). [CrossRef]
  24. J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218-220 (1992). [CrossRef]
  25. T. Akiyama, U. Staufer, N. F. de Rooij, D. Lange, C. Hagleitner, O. Brand, H. Baltes, A. Tonin, and H. R. Hidber, “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B 18, 2669-2675 (2000). [CrossRef]
  26. H. P. Lang, M. K. Baller, R. Berger, Ch. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Anal. Chim. Acta 393, 59-65 (1999). [CrossRef]
  27. D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes, “Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds,” Anal. Chem. 74, 3084-3095 (2002). [CrossRef] [PubMed]
  28. Y.-S. Kim, H.-J. Nam, S.-M. Cho, J.-W. Hong, D.-C. Kim, and J. U. Bu, “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sens. Actuators A 103, 122-129 (2003). [CrossRef]
  29. S. Shin, J. P. Kim, S. J. Sim, and J. Lee, “A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress,” Appl. Phys. Lett. 93, 102902 (2008). [CrossRef]
  30. C. A. Barrios, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18, 2419-2421 (2006). [CrossRef]
  31. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997). [CrossRef]
  32. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001). [CrossRef]
  33. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, R. Wehrspohn, U. Gösele, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal resonator,” Opt. Lett. 29, 174-176 (2004). [CrossRef] [PubMed]
  34. C. E. Png, S. T. Lim, E. P. L. Graham, and T. Reed, “Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities,” IEEE Trans. Nanotechnol. 5, 478-484 (2006). [CrossRef]
  35. C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26, 1524-1531 (2008). [CrossRef]
  36. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623-1631 (2008). [CrossRef] [PubMed]
  37. C. Lee, J. Thillaigovindan, C.-C. Chen, X. T. Chen, Y.-T. Chao, S. Tao, W. Xiang, A. Yu, H. Feng, and G. Q. Lo, “Si nanophotonics based cantilever sensor,” Appl. Phys. Lett. 93, 113113 (2008). [CrossRef]
  38. http://www.coventor.com/coventorware/
  39. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited