OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: 1878–1885

Three-dimensional finite difference split-step nonparaxial beam propagation method: new method for splitting of operators

Debjani Bhattacharya and Anurag Sharma  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. 1878-1885 (2009)
http://dx.doi.org/10.1364/AO.48.001878


View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method for splitting of operators in the three-dimensional finite difference split-step nonparaxial beam propagation method. The method increases the accuracy and the efficiency in terms of speed and memory requirements for three-dimensional wide-angle beam propagation. It also makes the application of the perfectly matched layer (PML) boundary condition very simple.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves

ToC Category:
Integrated Optics

History
Original Manuscript: September 30, 2008
Revised Manuscript: February 7, 2009
Manuscript Accepted: February 26, 2009
Published: March 24, 2009

Citation
Debjani Bhattacharya and Anurag Sharma, "Three-dimensional finite difference split-step nonparaxial beam propagation method: new method for splitting of operators," Appl. Opt. 48, 1878-1885 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-1878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Yevick and M. Glasner, “Forward wide-angle light propagation in semiconductor, rib waveguides,” Opt. Lett. 15, 174-176 (1990). [CrossRef] [PubMed]
  2. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743-1745 (1992). [CrossRef] [PubMed]
  3. J. Shibayama, K. Matsubara, M. Sekiguchi, J. Yamauchi, and H. Nakano, “Efficient nonuniform scheme for paraxial and wide-angle finite difference beam propagation methods,” J. Lightwave Technol. 17, 677-683 (1999). [CrossRef]
  4. J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Improved multistep method for wide-angle beam propagation,” IEEE Photonics Technol. Lett. 8, 1361-1363 (1996). [CrossRef]
  5. I. Ilic, R. Scarmozzino, and R. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996). [CrossRef]
  6. Y. Y. Lu and P. L. Ho, “Beam propagation method using a [(p ?1)/p] Padé approximant of the propagator,” Opt. Lett. 27, 683-685 (2002). [CrossRef]
  7. Y. Y. Lu and S. H. Wei, “A new iterative bidirectional beam propagation method,” IEEE Photonics Technol. Lett. 14, 1533-1535 (2002). [CrossRef]
  8. P. L. Ho and Y. Y. Lu, “A stable bidirectional propagation method based on scattering operators,” IEEE Photonics Technol. Lett. 13, 1316-1318 (2001). [CrossRef]
  9. A. Sharma and A. Agrawal, “New method for nonparaxial beam propagation,” J. Opt. Soc. Am. A 21, 1082-1087 (2004). [CrossRef]
  10. A. Sharma and A. Agrawal, “A new finite-difference-based method for wide-angle beam propagation,” IEEE Photonics Technol. Lett. 18, 944-946 (2006). [CrossRef]
  11. A. Sharma and A. Agrawal, “Non-paraxial split-step finite-difference method for beam propagation,” Opt. Quantum Electron. 38, 19-34 (2006). [CrossRef]
  12. D. Yevick, Jun Yu, W. Bardyszewski, and M. Glasner, “Stability issues in vector electric field propagation,” IEEE Photonics Technol. Lett. 7, 658-660 (1995). [CrossRef]
  13. S. L. Chui and Y. Y. Lu, “Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner,” J. Opt. Soc. Am. A 21, 420-425 (2004). [CrossRef]
  14. C. Ma and V. Keuren, “A simple three dimensional wide-angle beam propagation method,” Opt. Express 14, 4668-4674(2006). [CrossRef] [PubMed]
  15. C. Ma and V. Keuren, “A three-dimensional wide-angle BPM for optical waveguide structures,” Opt. Express 15, 402-407 (2007). [CrossRef] [PubMed]
  16. J. Shibayama, T. Takahashi, J. Yamauchi, and H. Nakano, “A three-dimensional horizontally wide-angle noniterative beam-propagation method based on the alternating-direction implicit scheme,” IEEE Photonics Technol. Lett. 18, 661-663 (2006). [CrossRef]
  17. J. Shibayama, T. Takahashi, J. Yamauchi, and H. Nakano, “A three-dimensional multistep horizontally wide-angle beam-propagation method based on the generalized Douglas scheme,” IEEE Photonics Technol. Lett. 18, 2535-2537 (2006). [CrossRef]
  18. D. Bhattacharya and A. Sharma, “Split-step non-paraxial finite difference method for 3-D scalar wave propagation,” Opt. Quantum Electron. 39, 865-876 (2007). [CrossRef]
  19. A. Sharma, D. Bhattacharya, and A. Agrawal, “Analytical computation of the propagation matrix for the finite-difference split-step non-paraxial method,” Opt. Quantum Electron. 39, 623-626 (2007). [CrossRef]
  20. M. K. Jain, P. K. Iyengar, and R. K. Jain, Numerical Methods for Scientific and Engineering Computation (Wiley Eastern, 1985).
  21. D. Yevick, “The application of complex Padé approximants to vector field propagation,” IEEE Photonics Technol. Lett. 12, 1636-1638 (2000). [CrossRef]
  22. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  23. C. Vasallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570-1577 (1996). [CrossRef]
  24. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8, 649-651 (1996). [CrossRef]
  25. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations,” IEEE Photonics Technol. Lett. 8, 652-654 (1996). [CrossRef]
  26. D. Zhou, W. P. Huang, C. L. Xu, D. G. Fang, and B. Chen, “The perfectly matched layer boundary condition for scalar finite-difference time-domain method,” IEEE Photonics Technol. Lett. 13, 454-456 (2001). [CrossRef]
  27. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599-604 (1994). [CrossRef]
  28. B. Chen, D. G. Fang, and B. H. Zhou, “Modified Berenger PML absorbing boundary condition for FD--TD meshes,” IEEE Microwave Guided Wave Lett. 5, 399-401 (1995). [CrossRef]
  29. A. Agrawal and A. Sharma, “Perfectly matched layer in numerical wave propagation: factors that affect its performance,” Appl. Opt. 43, 4225-4231 (2004). [CrossRef] [PubMed]
  30. D. Yevick, J. Yu, and F. Schmidt, “Analytical studies of absorbing and impedance-matched boundary layers,” IEEE Photonics Technol. Lett. 9, 73-75 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited