OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: 1926–1931

Soluble fullerene derivative in liquid crystal: polymer composites and their impact on photorefractive grating efficiency and resolution

Alexey Denisov and Jean-Louis de Bougrenet de la Tocnaye  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. 1926-1931 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using soluble fullerene derivative [60]PCBM, we improved photorefractive efficiency in polymer– liquid crystal composites in comparison to previous works on similar materials. We show the effect of polymer network results in resolution and bandwidth improvements compared to pure liquid crystals. This is explained by the introduction of a charge trapping mechanism, providing a memory effect for the composite. Based on this effect, we propose an approach for designing composites with higher grating efficiency and resolution.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.3710) Materials : Liquid crystals
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(190.5330) Nonlinear optics : Photorefractive optics
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 21, 2009
Revised Manuscript: March 11, 2009
Manuscript Accepted: March 11, 2009
Published: March 26, 2009

Alexey Denisov and Jean-Louis de Bougrenet de la Tocnaye, "Soluble fullerene derivative in liquid crystal: polymer composites and their impact on photorefractive grating efficiency and resolution," Appl. Opt. 48, 1926-1931 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723-1725 (1994). [CrossRef] [PubMed]
  2. E. V. Rudenko and A. V. Sukhov, “Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal,” JETP Lett. 59, 142-146 (1994).
  3. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137-2139 (1995). [CrossRef] [PubMed]
  4. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995). [CrossRef]
  5. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002). [CrossRef]
  6. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414-416 (2000). [CrossRef]
  7. W. Lee and C.-S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26, 521-523 (2001). [CrossRef]
  8. I. C. Khoo, S. Slussarenko, B. D. Guenther, Min-Yi Shih, P. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255(1998). [CrossRef]
  9. H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144-1146 (1997). [CrossRef] [PubMed]
  10. H. Ono, H. Shimokawaa, A. Emotoa, N. Kawatsukib, “Effects of droplet size on photorefractive properties of polymer dispersed liquid crystals,” Polymer 44, 7971-7978 (2003). [CrossRef]
  11. A. Golemme, B. L. Volodin, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer-dispersed liquid crystals,” Opt. Lett. 22, 1226-1228 (1997). [CrossRef] [PubMed]
  12. J. G. Winiarz and P. N. Prasad, “Photorefractive inorganic organic polymer-dispersed liquid-crystal nanocomposite photosensitized with cadmium sulfide quantum dots,” Opt. Lett. 27, 1330-1332 (2002). [CrossRef]
  13. G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139-169 (2001). [CrossRef]
  14. H. Ono, A. Hanazawa, T. Kawamura, H. Norisada, and N. Kawatsuki, “Response characteristics of high-performance photorefractive mesogenic composites,” J. Appl. Phys. 86, 1785-1790 (1999). [CrossRef]
  15. N. Kawatsuki, H. Norisada, T. Yamamoto, H. Ono, and A. Emoto, “Photorefractivity in polymer dissolved liquid crystal composites composed of low-molecular-weight nematic liquid crystals and copolymer comprising mesogenic side groups,” Sci. Tech. Adv. Mater. 6, 158-164 (2005). [CrossRef]
  16. J. C. Hummelen, G. Yu, J. Gao, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995). [CrossRef]
  17. A. Golemme, B. Kippelin, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655-660 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited