OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: 1955–1962

1.5% root-mean-squre flat-intensity laser beam formed using a binary-amplitude spatial light modulator

Jinyang Liang, Rudolph N. Kohn, Jr., Michael F. Becker, and Daniel J. Heinzen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. 1955-1962 (2009)
http://dx.doi.org/10.1364/AO.48.001955


View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28 mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43 mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose–Einstein condensate cold atom experiments.

© 2009 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 8, 2008
Revised Manuscript: March 10, 2009
Manuscript Accepted: March 20, 2009
Published: March 27, 2009

Citation
Jinyang Liang, Rudolph N. Kohn, Jr., Michael F. Becker, and Daniel J. Heinzen, "1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator," Appl. Opt. 48, 1955-1962 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-1955

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited