OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D14–D19

Multiplexed low coherence interferometry instrument for measuring microbicide gel thickness distribution

Tyler K. Drake, Francisco E. Robles, and Adam Wax  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D14-D19 (2009)
http://dx.doi.org/10.1364/AO.48.000D14


View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a Fourier-domain, multiplexed low coherence interferometry (LCI) instrument designed for application to intravaginal measurement of microbicidal gel distribution. Microbicide gels are topical products developed to combat sexually transmitted diseases, such as HIV/AIDS, by acting as delivery vehicles for active drugs and barrier layers to vaginal tissue. Measuring microbicide gel vaginal distribution is key to understanding the gel’s biological effectiveness. This study presents a new LCI system for measuring gel distribution that uses six multiplexed channels to achieve broad area scanning without the need for a mechanical scanner. The presented results characterize the performance of the Fourier-domain multiplexed LCI system in measuring gel thickness distribution. The system demonstrates good optical signal-to-noise ratio, steady performance across all channels, negligible cross talk, and accurate measurement with micrometer scale resolution. The potential impact of using a multiplexed LCI system for in vivo measurements is also discussed.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: June 16, 2008
Revised Manuscript: October 21, 2008
Manuscript Accepted: October 24, 2008
Published: December 3, 2008

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Tyler K. Drake, Francisco E. Robles, and Adam Wax, "Multiplexed low coherence interferometry instrument for measuring microbicide gel thickness distribution," Appl. Opt. 48, D14-D19 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-D14


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. K. Howett and J. P. Kuhl, “Microbicides for prevention of transmission of sexually transmitted diseases,” Curr. Pharm. Des. 11, 3731-3746 (2005). [CrossRef] [PubMed]
  2. R. L. Rowell, D. Fairhurst, S. Key, A. Morfesis, I. M. Monahan, M. Mitchnick, and R. A. Shattock, “Microbicides for HIV/AIDS. 1. Electrophoretic fingerprinting the H9 cell model system,” Langmuir 21, 10165-10171 (2005). [CrossRef] [PubMed]
  3. O. J. D'cruz and F. M. Uckun, “Clinical development of microbicides for the prevention of HIV infection,” Curr. Pharm. Des. 10, 315-336 (2004). [CrossRef] [PubMed]
  4. S. Garg, K. R. Tambwekar, K. Vermani, R. Kandarapu, A. Garg, D. P. Waller, and L. J. D. Zaneveld, “Development pharmaceutics of microbicide formulations. Part II: Formulation, evaluation, and challenges,” AIDS Patient Care and Standards 17, 377-399 (2003). [CrossRef]
  5. A. Stone, “Microbicides: A new approach to preventing HIV and other sexually transmitted infections,” Nat. Rev. Drug Discov. 1, 977-985 (2002). [CrossRef] [PubMed]
  6. A. R. Geonnotti and D. F. Katz, “Dynamics of HIV neutralization by a microbicide formulation layer: Biophysical fundamentals and transport theory,” Biophys. J. 91, 2121-2130(2006). [CrossRef] [PubMed]
  7. M. H. Henderson, G. M. Couchman, D. K. Walmer, J. J. Peters, D. H. Owen, M. A. Brown, M. L. Lavine, and D. F. Katz, “Optical imaging and analysis of human vaginal coating by drug delivery gels,” Contraception 75, 142-151 (2007). [CrossRef] [PubMed]
  8. C. K. Mauck, D. Katz, E. P. Sandefer, M. D. Nasution, M. Henderson, G. A. Digenis, I. Su, R. Page, and K. Barnhart, “Vaginal distribution of Replens (R) and K-Y (R) Jelly using three imaging techniques,” Contraception 77, 195-204(2008). [CrossRef] [PubMed]
  9. M. H. Henderson, J. J. Peters, D. K. Walmer, G. M. Couchman, and D. F. Katz, “Optical instrument for measurement of vaginal coating thickness by drug delivery formulations,” Rev. Sci. Instrum. 76, 034302 (2005). [CrossRef]
  10. K. T. Barnhart, E. S. Pretorius, K. Timbers, D. Shera, M. Shabbout, and D. Malamud, “In vivo distribution of a vaginal gel: MRI evaluation of the effects of gel volume, time and simulated intercourse,” Contraception 70, 498-505 (2004). [CrossRef] [PubMed]
  11. J. Brown, G. Hooper, C. J. Kenyon, S. Haines, J. Burt, J. M. Humphries, S. P. Newman, S. S. Davis, R. A. Sparrow, and I. R. Wilding, “Spreading and retention of vaginal formulations in post-menopausal women as assessed by gamma scintigraphy,” Pharm. Res. 14, 1073-1078 (1997). [CrossRef] [PubMed]
  12. K. E. Braun, J. D. Boyer, M. H. Henderson, D. F. Katz, and A. Wax, “Label-free measurement of microbicidal gel thickness using low-coherence interferometry,” J. Biomed. Opt. 11, 020504 (2006). [CrossRef] [PubMed]
  13. Y. Luo, L. J. Arauz, J. E. Castillo, J. K. Barton, and R. K. Kostuk, “Parallel optical coherence tomography system,” Appl. Opt. 46, 8291-8297 (2007). [CrossRef] [PubMed]
  14. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  15. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  16. K. E. Braun and A. Wax, “Improved simulations for measuring microbicidal gel thickness using low-coherence interferometry,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2006), paper FTuE4.
  17. M. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  18. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44, 2072-2081 (2005). [CrossRef] [PubMed]
  19. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited