OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D144–D150

Large coherence length swept source for axial length measurement of the eye

Changho Chong, Takuya Suzuki, Kohki Totsuka, Atsushi Morosawa, and Tooru Sakai  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D144-D150 (2009)
http://dx.doi.org/10.1364/AO.48.00D144


View Full Text Article

Enhanced HTML    Acrobat PDF (869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present and demonstrate a swept source with a large coherence length using a quasi-phase continuous tuning (QPCT) technique. QPCT is a method of minimizing the phase shift per round trip with respect to the tunable filter so that the resonance of lasing becomes high, resulting in high finesse of lasing during a rapid sweep. The demonstrated swept source consists of a fiber ring extended cavity laser with a diffraction grating and a polygon scanner-based tunable filter configuration. The projected beam on the diffraction grating is expanded with a multiple of beam expanders to achieve high finesse of the filter. The source demonstrated an 18 nm swept range at 1060 nm wavelength, 28 mm coherence length, and 6.2 mW peak power at a 2.5 kHz swept rate. OCT imaging results showed that a coherence length of 28 mm enables the measurement of the axial length of a pig's eye with 20 mm length in physical size.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3600) Lasers and laser optics : Lasers, tunable
(170.3880) Medical optics and biotechnology : Medical and biological imaging

History
Original Manuscript: September 2, 2008
Revised Manuscript: January 13, 2009
Manuscript Accepted: January 31, 2009
Published: February 26, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Changho Chong, Takuya Suzuki, Kohki Totsuka, Atsushi Morosawa, and Tooru Sakai, "Large coherence length swept source for axial length measurement of the eye," Appl. Opt. 48, D144-D150 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-D144


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  2. T. Olsen and M. Thorwest “Calibration of axial length measurements with the Zeiss IOLMaster,” J. Cataract Refract. Surg. 31, 1345-1350 (2005). [CrossRef] [PubMed]
  3. I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004). [PubMed]
  7. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  9. J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier-domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004). [CrossRef] [PubMed]
  10. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008). [CrossRef] [PubMed]
  11. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1 ?m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121-6139 (2007). [CrossRef] [PubMed]
  12. C. Chong, T.Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source,” Opt. Express 16, 21105-2118 (2008). [CrossRef] [PubMed]
  13. C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with High Linearity Sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008). [CrossRef]
  14. S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photonics Technol. Lett. 16, 293-295 (2004). [CrossRef] [PubMed]
  15. S. H. Yun, C. BoudouxG. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003). [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  17. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31, 760-762 (2006). [CrossRef] [PubMed]
  18. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12, 4822-4828(2004). [CrossRef] [PubMed]
  19. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier-domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  20. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652-10664(2005). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited