OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D169–D177

Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

Sava Sakadžić, Shuai Yuan, Ergin Dilekoz, Svetlana Ruvinskaya, Sergei A. Vinogradov, Cenk Ayata, and David A. Boas  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D169-D177 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain.

© 2009 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Original Manuscript: September 3, 2008
Revised Manuscript: January 9, 2009
Manuscript Accepted: January 20, 2009
Published: February 27, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Sava Sakadžić, Shuai Yuan, Ergin Dilekoz, Svetlana Ruvinskaya, Sergei A. Vinogradov, Cenk Ayata, and David A. Boas, "Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression," Appl. Opt. 48, D169-D177 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?,” Trends Neurosci. 25, 27-31 (2002). [CrossRef] [PubMed]
  2. D. J. Heeger and D. Ress, “What does fMRI tell us about neuronal activity?,” Nat. Rev. Neurosci. 3, 142-151 (2002). [CrossRef] [PubMed]
  3. M. Lauritzen, “Relationship of spikes, synaptic activity, and local changes of cerebral blood flow,” J. Cereb. Blood Flow Metab. 21, 1367-1383 (2001). [CrossRef] [PubMed]
  4. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological investigation of the basis of the fMRI signal,” Nature 412, 150-157 (2001). [CrossRef] [PubMed]
  5. P. Frykholm, L. Hillered, B. Langstrom, L. Persson, J. Valtysson, and P. Enblad, “Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates,” J. Neurosurg. 102, 1076-1084 (2005). [CrossRef] [PubMed]
  6. J. V. Guadagno, E. A. Warburton, P. S. Jones, T. D. Fryer, D. J. Day, J. H. Gillard, T. A. Carpenter, F. I. Aigbirhio, C. J. Price, and J. C. Baron, “The diffusion-weighted lesion in acute stroke: Heterogeneous patterns of flow/metabolism uncoupling as assessed by quantitative positron emission tomography,” Cerebrovasc. Dis. 19, 239-246 (2005). [CrossRef] [PubMed]
  7. H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” J. Appl. Physiol. 100, 328-335 (2006). [CrossRef]
  8. C. Humpel and J. Marksteiner, “Cerebrovascular damage as a cause for Alzheimer's disease,” Curr. Neurovasc. Res. 2, 341-347 (2005). [CrossRef] [PubMed]
  9. G. De Visscher, S. Rooker, P. Jorens, J. Verlooy, M. Borgers, R. S. Reneman, K. Van Rossem, and W. Flameng, “Pentobarbital fails to reduce cerebral oxygen consumption early after non-hemorrhagic closed head injury in rats,” J. Neurotrauma 22, 793-806 (2005). [CrossRef] [PubMed]
  10. M. A. Mintun, M. E. Raichle, W. R. Martin, and P. Herscovitch, “Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography,” J. Nucl. Med. 25, 177-187 (1984). [PubMed]
  11. M. M. Ter-Pogossian, M. E. Phelps, E. J. Hoffman, and N. A. Mullani, “A positron-emission transaxial tomograph for nuclear imaging (PETT),” Radiology 114, 89-98 (1975). [PubMed]
  12. R. B. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge U. Press, 2002).
  13. N. K. Logothetis, “What we can do and what we cannot do with fMRI,” Nature 453, 869-878 (2008). [CrossRef] [PubMed]
  14. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  15. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  16. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28-30 (2003). [CrossRef] [PubMed]
  17. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004). [CrossRef] [PubMed]
  18. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006). [CrossRef] [PubMed]
  19. D. F. Wilson, S. Gomi, A. Pastuszko, and J. H. Greenberg, “Microvascular damage in the cortex of cat brain from middle cerebral artery occlusion and reperfusion,” J. Appl. Physiol. 74, 580-589 (1993). [PubMed]
  20. M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, and H. Abe, “Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: Dynamic changes in hemoglobin concentration and oxygenation,” J. Cereb. Blood Flow Metab. 19, 246-259 (1999). [CrossRef] [PubMed]
  21. D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: Relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997). [CrossRef]
  22. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13, 1002-1015(2001). [CrossRef] [PubMed]
  23. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911-924(2003). [CrossRef] [PubMed]
  24. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279-290 (2005). [CrossRef] [PubMed]
  25. A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. 368, 151-156 (2004). [CrossRef] [PubMed]
  26. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559-564 (2003). [CrossRef] [PubMed]
  27. C. Ayata, A. K. Dunn, O. Y. Gursoy, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744-755 (2004). [CrossRef] [PubMed]
  28. H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136-142 (2002). [CrossRef] [PubMed]
  29. R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990). [CrossRef] [PubMed]
  30. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, E. H. Lo, M. A. Moskowitz, and C. Ayata, “Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia,” Brain 130, 1631-1642 (2007). [CrossRef] [PubMed]
  31. H. K. Shin, M. Nishimura, P. B. Jones, H. Ay, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia,” Stroke 39, 1548-1555 (2008). [CrossRef] [PubMed]
  32. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 44007 (2008). [CrossRef]
  33. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262, 5476-5482 (1987). [PubMed]
  34. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649-1651(1988). [CrossRef] [PubMed]
  35. E. R. Carraway, J. N. Demas, B. A. Degraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Anal. Chem. 63, 337-342 (1991). [CrossRef]
  36. W. Zhong, P. Urayama, and M. A. Mycek, “Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing,” J. Phys. D 36, 1689-1695 (2003). [CrossRef]
  37. S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609-1617 (1996). [CrossRef] [PubMed]
  38. D. F. Wilson, W. M. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol. 101, 1648-1656 (2006). [CrossRef] [PubMed]
  39. K. P. McNamara and Z. Rosenzweig, “Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors,” Anal. Chem. 70, 4853-4859 (1998). [CrossRef]
  40. J. K. Asiedu, J. Ji, M. Nguyen, N. Rosenzweig, and Z. Rosenzweig, “Development of a digital fluorescence sensing technique to monitor the response of macrophages to external hypoxia,” J. Biomed. Opt. 6, 116-121 (2001). [CrossRef] [PubMed]
  41. R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73, 1223-1231 (1997). [CrossRef] [PubMed]
  42. A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol.-Heart. C. 294, H2905-2916 (2008). [CrossRef]
  43. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33, 1038-1040 (2008). [CrossRef] [PubMed]
  44. O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” Chemphyschem 9, 1673-1679 (2008). [CrossRef] [PubMed]
  45. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310, 191-198 (2002). [CrossRef] [PubMed]
  46. S. A. Vinogradov, L. W. Lo, and D. F. Wilson, “Dendritic polyglutamic porphyrins: Probing porphyrin protection by oxygen-dependent quenching of phosphorescence,” Chem.-Eur. J. 5, 1338-1347 (1999). [CrossRef]
  47. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum. 72, 3396-3406 (2001). [CrossRef]
  48. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Phys. A 132, 147-152 (2002). [CrossRef]
  49. D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, and J. Bennett, “Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging,” Appl. Opt. 44, 5239-5248 (2005). [CrossRef] [PubMed]
  50. J. W. Dobrucki, “Interaction of oxygen-sensitive luminescent probes Ru(phen)(3)(2+) and Ru(bipy)(3)(2+) with animal and plant cells in vitro. Mechanism of phototoxicity and conditions for non-invasive oxygen measurements,” J. Photochem. Photobiol. B. 65, 136-144 (2001). [CrossRef]
  51. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981). [CrossRef]
  52. J. W. Severinghaus, “Simple, accurate equations for human-blood O2 dissociation computations,” J. Appl. Physiol. 46, 599-602 (1979). [PubMed]
  53. D. D. Lobdell, “An invertible simple equation for computation of blood O2 dissociation relations,” J. Appl. Physiol. 50, 971-973 (1981). [PubMed]
  54. B. M. Ances, D. G. Buerk, J. H. Greenberg, and J. A. Detre, “Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats,” Neurosci. Lett. 306, 106-110 (2001). [CrossRef] [PubMed]
  55. B. M. Ances, D. F. Wilson, J. H. Greenberg, and J. A. Detre, “Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching,” J. Cereb. Blood Flow Metab. 21, 511-516 (2001). [CrossRef] [PubMed]
  56. K. Masamoto, J. Kershaw, M. Ureshi, N. Takizawa, H. Kobayashi, K. Tanishita, and I. Kanno, “Apparent diffusion time of oxygen from blood to tissue in rat cerebral cortex: Implication for tissue oxygen dynamics during brain functions,” J. Appl. Physiol. 103, 1352-1358 (2007). [CrossRef] [PubMed]
  57. J. B. Mandeville, J. J. A. Marota, C. Ayata, G. Zaharchuk, M. A. Moskowitz, B. R. Rosen, and R. M. Weisskoff, “Evidence of a cerebrovascular post-arteriole Windkessel with delayed compliance,” J. Cereb. Blood Flow Metab. 19, 679-689 (1999). [CrossRef] [PubMed]
  58. K. M. Sicard and T. Q. Duong, “Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals,” Neuroimage 25, 850-858 (2005). [CrossRef] [PubMed]
  59. J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the early response to rat forepaw stimulation,” Magn. Reson. Med. 41, 247-252 (1999). [CrossRef] [PubMed]
  60. I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: Implications for functional brain imaging,” Science 286, 1555-1558 (1999). [CrossRef] [PubMed]
  61. S. A. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses,” Neuron 42, 347-355 (2004). [CrossRef] [PubMed]
  62. T. L. Davis, K. K. Kwong, R. M. Weisskoff, and B. R. Rosen, “Calibrated functional MRI: Mapping the dynamics of oxidative metabolism,” Proc. Natl. Acad. Sci. USA 95, 1834-1839(1998). [CrossRef] [PubMed]
  63. S.-G. Kim and K. Ugurbil, “Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change,” Magn. Reson. Med. 38, 59-65(1997). [CrossRef] [PubMed]
  64. P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83, 1140-1144 (1986). [CrossRef] [PubMed]
  65. P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence, “Nonoxidative glucose consumption during focal physiologic neural activity,” Science 241, 462-464 (1988). [CrossRef] [PubMed]
  66. W. H. Marshall, “Spreading cortical depression of Leao,” Physiol. Rev. 39, 239-279 (1959). [PubMed]
  67. N. Hadjikhani, M. S. Del Rio, O. Wu, D. Schwartz, D. Bakker, B. Fischl, K. K. Kwong, F. M. Cutrer, B. R. Rosen, R. B. Tootell, A. G. Sorensen, and M. A. Moskowitz, “Mechanisms of migraine aura revealed by functional MRI in human visual cortex,” Proc. Natl. Acad. Sci. USA 98, 4687-4692(2001). [CrossRef] [PubMed]
  68. M. Nedergaard, “Mechanisms of brain damage in focal cerebral ischemia,” Acta Neurol. Scand. 77, 81-101 (1988). [CrossRef] [PubMed]
  69. A. A. P. Leao, “Spreading depression of activity in cerebral cortex,” J. Neurophysiol. 7, 359-390 (1944).
  70. H. Martins-Ferreira, M. Nedergaard, and C. Nicholson, “Perspectives on spreading depression,” Brain Res. Rev. 32, 215-234 (2000). [CrossRef] [PubMed]
  71. T. Takano, G. F. Tian, W. Peng, N. Lou, D. Lovatt, A. J. Hansen, K. A. Kasischke, and M. Nedergaard, “Cortical spreading depression causes and coincides with tissue hypoxia,” Nat. Neurosci. 10, 754-762 (2007). [CrossRef] [PubMed]
  72. C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24, 1172-1182 (2004). [CrossRef] [PubMed]
  73. R. P. Kraig, C. R. Ferreira-Filho, and C. Nicholson, “Alkaline and acid transients in cerebellar microenvironment,” J. Neurophysiol. 49, 831-850 (1983). [PubMed]
  74. L. M. Gault, C. W. Lin, J. C. Lamanna, and W. D. Lust, “Changes in energy metabolites, cGMP and intracellular pH during cortical spreading depression,” Brain Res. 641, 176-180 (1994). [CrossRef] [PubMed]
  75. T. P. Obrenovitch, J. Urenjak, and M. Wang, “Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasis,” J. Cereb. Blood Flow Metab. 22, 680-688 (2002). [CrossRef] [PubMed]
  76. G. Menna, C. K. Tong, and M. Chesler, “Extracellular pH changes and accompanying cation shifts during ouabain-induced spreading depression,” J. Neurophysiol. 83, 1338-1345 (2000). [PubMed]
  77. C. K. Tong and M. Chesler, “Endogenous pH shifts facilitate spreading depression by effect on NMDA receptors,” J. Neurophysiol. 81, 1988-1991 (1999). [PubMed]
  78. C. K. Tong and M. Chesler, “Modulation of spreading depression by changes in extracellular pH,” J. Neurophysiol. 84, 2449-1457 (2000). [PubMed]
  79. W. A. Mutch and A. J. Hansen, “Extracellular pH changes during spreading depression and cerebral ischemia: Mechanisms of brain pH regulation,” J. Cereb. Blood Flow Metab. 4, 17-27 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (3210 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited