OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D187–D197

Multimodal optical imaging of microvessel network convective oxygen transport dynamics

Casey deDeugd, Mamta Wankhede, and Brian S. Sorg  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D187-D197 (2009)
http://dx.doi.org/10.1364/AO.48.00D187


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Convective oxygen transport by microvessels depends on several parameters, including red blood cell flux and oxygen saturation. We demonstrate the use of intravital microscopy techniques to measure hemoglobin saturations, red blood cell fluxes and velocities, and microvessel cross-sectional areas in regions of microvascular networks containing multiple vessels. With these methods, data can be obtained at high spatial and temporal resolution and correlations between oxygen transport and hemodynamic parameters can be assessed. In vivo data are presented for a mouse mammary adenocarcinoma grown in a dorsal skinfold window chamber model.

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.0180) Microscopy : Microscopy
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

History
Original Manuscript: September 2, 2008
Revised Manuscript: December 17, 2008
Manuscript Accepted: January 26, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Casey deDeugd, Mamta Wankhede, and Brian S. Sorg, "Multimodal optical imaging of microvessel network convective oxygen transport dynamics," Appl. Opt. 48, D187-D197 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-10-D187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Guyton, Textbook of Medical Physiology (W. B. Saunders, 1991).
  2. B. R. Duling and R. M. Berne, “Longitudinal gradients in periarteriolar oxygen tension,” Circ. Res. 27, 669-678 (1970). [PubMed]
  3. B. R. Duling, “Microvascular responses to alterations in oxygen tension,” Circ. Res. 31, 481-489 (1972). [PubMed]
  4. R. D. Shonat and P. C. Johnson, “Oxygen tension gradients and heterogeneity in venous microcirculation: a phosphorescence quenching study,” Am. J. Physiol. Heart Circ. Physiol. 272, H2233-H2240 (1997).
  5. A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83, 933-963 (2003). [PubMed]
  6. R. N. Pittman, “Oxygen transport and exchange in the microcirculation,” Microcirculation 12, 59-70 (2005). [CrossRef] [PubMed]
  7. R. L. Greenman, S. Panasyuk, X. Wang, T. E. Lyons, T. Dinh, L. Longoria, J. M. Giurini, J. Freeman, L. Khaodhiar, and A. Veves, “Early changes in the skin microcirculation and muscle metabolism of the diabetic foot,” Lancet 366, 1711-1717 (2005). [CrossRef] [PubMed]
  8. P. E. James, D. Lang, T. Tufnell-Barret, A. B. Milsom, and M. P. Frenneaux, “Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin,” Circ. Res. 94, 976-983 (2004). [CrossRef] [PubMed]
  9. M. A. Boegehold, “Microvascular structure and function in salt-sensitive hypertension,” Microcirculation 9, 225-241(2002). [PubMed]
  10. J. J. Mourad and M. Laville, “Is hypertension a tissue perfusion disorder? Implications for renal and myocardial perfusion,” J. Hypertens. 24, S10-S16 (2006). [CrossRef]
  11. P. Cabrales, A. G. Tsai, and M. Intaglietta, “Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity?” Shock Waves 27, 380-389 (2007).
  12. L. N. Torres, I. P. Torres Filho, R. W. Barbee, M. H. Tiba, K. R. Ward, and R. N. Pittman, “Systemic responses to prolonged hemorrhagic hypotension,”Am. J. Physiol. Heart Circ. Physiol. 286, H1811-H1820 (2004). [CrossRef] [PubMed]
  13. F. Gottrup, “Oxygen in wound healing and infection,” World J. Surg. 28, 312-315 (2004). [CrossRef] [PubMed]
  14. P. Melis, M. L. Noorlander, A. J. van der Kleij, C. J. van Noorden, and C. M. van der Horst, “Oxygenation and microcirculation during skin stretching in undermined and nonundermined skin,” Plast. Reconstr. Surg. 112, 1295-1301(2003). [CrossRef] [PubMed]
  15. M. W. Dewhirst, “Concepts of oxygen transport at the microcirculatory level,” Semin. Radiat. Oncol. 8, 143-150 (1998). [CrossRef] [PubMed]
  16. R. K. Jain, “Determinents of tumor blood flow: a review,” Cancer Res. 48, 2641-2658 (1988). [PubMed]
  17. P. Vaupel and L. Harrison, “Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response,” Oncologist 9 (Suppl. 5), 4-9 (2004). [CrossRef] [PubMed]
  18. T. A. Woolsey, C. M. Rovainen, S. B. Cox, M. H. Henegar, G. E. Liang, D. Liu, Y. E. Moskalenko, J. Sui, and L. Wei, “Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain,” Cereb. Cortex 6, 647-660 (1996). [CrossRef] [PubMed]
  19. T. W. Secomb, R. Hsu, E. Y. H. Park, and M. W. Dewhirst, “Green's function methods for analysis of oxygen delivery to tissue by microvascular networks,” Ann. Biomed. Eng. 32, 1519-1529 (2004). [CrossRef]
  20. D. M. Brizel, B. Klitzman, J. M. Cook, J. Edwards, G. Rosner, and M. W. Dewhirst, “A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model,” Int. J. Radiat. Oncol. Biol. Phys. 25, 269-276 (1993). [CrossRef] [PubMed]
  21. B. Klitzman and B. R. Duling, “Microvascular hematocrit and red cell flow in resting and contracting striated muscle,” Am. J. Physiol. 237, H481-H490 (1979). [PubMed]
  22. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28-30 (2003). [CrossRef] [PubMed]
  23. R. D. Shonat, E. S. Wachman, W.-H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73, 1223-1231 (1997). [CrossRef] [PubMed]
  24. B. Styp-Rekowska, N. M. Disassa, B. Reglin, L. Ulm, H. Kuppe, T. W. Secomb, and A. R. Pries, “An imaging spectroscopy approach for measurement of oxygen saturation and hematocrit during intravital microscopy,” Microcirculation 14, 207-221 (2007). [CrossRef] [PubMed]
  25. B. S. Sorg, M. E. Hardee, N. Agarwal, B. J. Moeller, and M. W. Dewhirst, “Spectral imaging facilitates visualization and measurements of unstable and abnormal microvascular oxygen transport in tumors,” J. Biomed. Opt. 13, 014026 (2008). [CrossRef] [PubMed]
  26. B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J Biomed. Opt. 10, 044004 (2005). [CrossRef]
  27. M. L. Ellsworth, R. N. Pittman, and C. G. Ellis, “Measurement of hemoglobin oxygen saturation in capillaries,” Am. J. Physiol. 252, H1031-H1040 (1987). [PubMed]
  28. H. Kerger, G. Groth, K. Kalenka, P. Vajkoczy, A. G. Tsai, and M. Intaglietta, “pO2 measurements by phosphorescence quenching: characteristics and applications of an automated system,” Microvasc. Res. 65, 32-38 (2003). [CrossRef] [PubMed]
  29. L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol. 98, 1503-1510 (2005). [CrossRef]
  30. D. Fukumura, L. Xu, Y. Chen, T. Gohongi, B. Seed, and R. K. Jain, “Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo,” Cancer Res. 61, 6020-6024 (2001). [PubMed]
  31. A. S. Golub and R. N. Pittman, “Erythrocyte-associated transients in pO2 revealed in capillaries of rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 288, H2735-H2743 (2005). [CrossRef] [PubMed]
  32. D. P. Swain and R. N. Pittman, “Oxygen exchange in the microcirculation of hamster retractor muscle,” Am. J. Physiol. Heart Circ. Physiol. 256, H247-H255 (1989).
  33. J. L. Unthank, J. M. Lash, J. C. Nixon, R. A. Sidner, and H. G. Bohlen, “Evaluation of carbocyanine-labeled erythrocytes for microvascular measurements,” Microvasc. Res. 45, 193-210 (1993). [CrossRef] [PubMed]
  34. D. Feng, D. Marshburn, F. Jen, R. J. Weinberg, R. M. Taylor II, and A. Burette, “Stepping into the third dimension,” J. Neurosci. 27, 12757-12760 (2007). [CrossRef] [PubMed]
  35. M. T. Fallon, “Rats and mice,” in Handbook of Rodent and Rabbit Medicine, K. Laber-Laird, M. M. Swindle, and P. Flecknell, eds. (Elsevier Science, 1996), pp. 1-38.
  36. R. D. Braun, J. L. Lanzen, and M. W. Dewhirst, “Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats,” Am. J. Physiol. 277, H551-H568 (1999). [PubMed]
  37. L. I. Cardenas-Navia, D. Yu, R. D. Braun, D. M. Brizel, T. W. Secomb, and M. W. Dewhirst, “Tumor-dependent kinetics of partial pressure of oxygen flucutations during air and oxygen breathing,” Cancer Res. 64, 6010-6017 (2004). [CrossRef] [PubMed]
  38. J. Lanzen, R. D. Braun, B. Klitzman, D. Brizel, T. W. Secomb, and M. W. Dewhirst, “Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor,” Cancer Res. 66, 2219-2223 (2006). [CrossRef] [PubMed]
  39. K. G. Brurberg, H. K. Skogmo, B. A. Graff, D. R. Olsen, and E. K. Rofstad, “Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy,” Radiother. Oncol. 77, 220-226 (2005). [CrossRef] [PubMed]
  40. K. G. Brurberg, M. Thuen, E.-B. M. Ruud, and E. K. Rofstad, “Fluctuations in pO2 in irradiated human melanoma xenografts,” Radiat. Res. 165, 16-25 (2006). [CrossRef] [PubMed]
  41. A. Vadapalli, R. N. Pittman, and A. S. Popel, “Estimating oxygen transport resistance of the microvascular wall,” Am. J. Physiol. Heart Circ. Physiol. 279, 657-671 (2000).
  42. W. G. Hundley, G. J. Renaldo, J. E. Levasseur, and H. A. Kontos, “Vasomotion in cerebral microcirculation of awake rabbits,” Am. J. Physiol. 254, H67-H71 (1988). [PubMed]
  43. C. E. Riva, C. J. Pournaras, C. L. Poitry-Yamate, and B. L. Petrig, “Rhythmic changes in velocity, volume, and flow of blood in the optic nerve head tissue,” Microvasc. Res. 40, 36-45 (1990). [CrossRef] [PubMed]
  44. S. Bertuglia, A. Colantuoni, G. Coppini, and M. Intaglieta, “Hypoxia- or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation,” Am. J. Physiol. 260, H362-H372 (1991). [PubMed]
  45. H. Kimura, R. D. Braun, E. T. Ong, R. Hsu, T. W. Secomb, D. Papahadjopoulos, K. Hong, and M. W. Dewhirst, “Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma,” Cancer Res. 56, 5522-5528 (1996). [PubMed]
  46. J. L. Lanzen, R. D. Braun, A. L. Ong, and M. W. Dewhirst, “Variability in blood flow and pO2 in tumors in response to carbogen breathing,” Int. J. Radiat. Oncol. Biol. Phys. 42, 855-859 (1998). [CrossRef] [PubMed]
  47. M. W. Dewhirst, Y. Cao, and B. J. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8, 425-437 (2008). [CrossRef] [PubMed]
  48. E. M. Lord, L. Harwell, and C. J. Koch, “Detection of hypoxic cells by monoclonal antibody recognizing 2-nitroimidazole adducts,” Cancer Res. 53, 5721-5726 (1993). [PubMed]
  49. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. USA 104, 19494-19499 (2007). [CrossRef] [PubMed]
  50. R. K. Jain, “Normalization of tumor microvasculature: an emerging concept in antiangiogenic therapy,” Science 307, 58-62 (2005). [CrossRef] [PubMed]
  51. F. Adhami, G. Liao, Y. M. Morozov, A. Schloemer, V. J. Schmithorst, J. N. Lorenz, R. S. Dunn, C. V. Vorhees, M. Wills-Karp, J. L. Degen, R. J. Davis, N. Mizushima, P. Rakic, B. J. Dardzinski, S. K. Holland, F. R. Sharp, and C.-Y. Kuan, “Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy,” Am. J. Pathol. 169, 566-583(2006). [CrossRef] [PubMed]
  52. R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature 438, 960-966 (2005). [CrossRef] [PubMed]
  53. M. W. Dewhirst, “Angiogenesis and blood flow in solid tumors,” in Drug Resistance in Oncology, B. A. Teicher, ed. (Marcel Dekker, 1993), pp. 3-23.
  54. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33, 1038-1040 (2008). [CrossRef] [PubMed]
  55. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006). [CrossRef]
  56. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7, 864-868 (2001). [CrossRef] [PubMed]
  57. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32, 2641-2643 (2007). [CrossRef] [PubMed]
  58. K. Tsukada, E. Sekizuka, C. Oshio, K. Tsujioka, and H. Minamitani, “Red blood cell velocity and oxygen tension measurement in cerebral microvessels by double-wavelength photoexcitation,” J. Appl. Physiol. 96, 1561-1568(2004). [CrossRef]
  59. P. Vaupel, “Tumor microenvironmental physiology and its implications for radiation oncology,” Semin. Radiat. Oncol. 14, 198-206 (2004). [CrossRef] [PubMed]
  60. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35-R66 (2001). [CrossRef]
  61. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci. (31 Jan. 2008).
  62. C. Hitzenberger, P. Trost, P.-W. Lo, and Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753-2761(2003). [CrossRef] [PubMed]
  63. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439-1441 (1997). [CrossRef]
  64. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12, 041213 (2007). [CrossRef] [PubMed]
  65. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007). [CrossRef] [PubMed]
  66. L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high resolution optical coherence tomography,” J. Biomed. Opt. 12, 041212 (2007). [CrossRef] [PubMed]
  67. C.-W. Lu, C.-K. Lee, M.-T. Tsai, Y.-M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008). [CrossRef] [PubMed]
  68. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, “Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking,” Opt. Express 14, 3377-3388 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited