OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D247–D255

Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography

Zhongchi Luo, Zhijia Yuan, Melissa Tully, Yingtian Pan, and Congwu Du  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D247-D255 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a dual-imaging technique combining laser speckle contrast imaging and spectral-domain Doppler optical coherence tomography to enable quantitative characterization of local cerebral blood flow (CBF) changes in rat cortex in response to drug stimulus (e.g., cocaine) at high spatiotemporal resolutions. To examine the utility of this new technique, animal experiments were performed to study the influences of anesthetic regimes (e.g., isoflurane, α-chloralose) on the pharmadynamic effects of acute cocaine challenge. The results showed that cocaine-evoked CBF patterns (e.g., increases in α-chloralose and decreases in isoflurane regimes) were quantitatively characterized, thus rendering it a potentially useful tool for imaging studies of brain functions.

© 2009 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

Original Manuscript: September 3, 2008
Revised Manuscript: January 26, 2009
Manuscript Accepted: January 31, 2009
Published: March 4, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Zhongchi Luo, Zhijia Yuan, Melissa Tully, Yingtian Pan, and Congwu Du, "Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography," Appl. Opt. 48, D247-D255 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Bardo, “Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens,” Crit. Rev. Neurobiol. 12, 37-67 (1998). [PubMed]
  2. J. J. Marota, J. B. Mandeville, R. M. Weisskoff, M. A. Moskowitz, B. R. Rosen, and B. E. Kosofsky, “Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat,” NeuroImage 11, 13-23 (2000). [CrossRef] [PubMed]
  3. K. F. Schmidt, M. Febo, Q. Shen, F. Luo, K. M. Sicard, C. F. Ferris, E. A. Stein, and T. Q. Duong, “Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI,” Psychopharmacology 185, 479-486 (2006). [PubMed]
  4. J. C. Brust, “Vasculitis owing to substance abuse,” Neurol. Clin. 15, 945-957 (1997). [CrossRef]
  5. N. E. Martinez, E. Diez-Tejedor, and A. Frank, “Vasospasm/thrombus in cerebral ischemia related to cocaine abuse,” Stroke 27, 147-148 (1996). [PubMed]
  6. A. Buttner, G. Mall, R. Penning, and H. Sachs, “The neuropathology of cocaine abuse,” Leg. Med. (Tokyo) 5, S240-S242 (2003). [CrossRef]
  7. R. L. Gollub, H. C. Breiter, H. Kantor, D. Kennedy, D. Gastfriend, R. T. Mathe, N. Makris, A. Guimaraes, J. Riorden, T. Campbell, M. Foley, S. E. Hyman, B. Rosen, and R. Weisskoff, “Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects,” J. Cereb. Blood Flow Metab. 18, 724-734 (1998). [CrossRef] [PubMed]
  8. M. J. Kaufman, J. M. Levin, L. C. Maas, S. L. Rose, S. E. Lukas, J. H. Mendelson, B. M. Cohen 1, and P. F. Renshaw, “Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study,” Psychopharmacology 138, 76-81 (1998). [CrossRef] [PubMed]
  9. E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals, J. M. Links, R. Herning, R. Grayson, J. H. Jaffe, and H. N. Wagner Jr, “Cocaine-induced reduction of glucose utilization in the human brain: a study using positron emission tomography and [fluorine18]-fluorodeoxyglucose,” Arch. Gen. Psychiatry 47, 567-574 (1990). [CrossRef] [PubMed]
  10. G. D. Pearlson, P. J. Jeffery, G. J. Harris, C. A. Ross, M. W. Fischman, and E. E. Camargo, “Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects,” Am. J. Psychiatry 150, 495-497 (1993). [PubMed]
  11. E. A. Wallace, G. Wisniewski, G. Zubal, C. H. Vandyck, S. E. Pfau, E. O. Smith, M. I. Rosen, M. C. Sullivan, S. W. Woods, and T. R. Kosten, “Acute cocaine effects on absolute cerebral blood flow,” Psychopharmacology 128, 17-20 (1996). [CrossRef] [PubMed]
  12. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996). [CrossRef]
  13. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 2001, R35-R66. [CrossRef]
  14. T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004). [CrossRef] [PubMed]
  15. A. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-289 (2005). [CrossRef] [PubMed]
  16. R. Wang, S. Jacques, Z. Ma, S. Hurst, S. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083-4097 (2007). [CrossRef] [PubMed]
  17. Z. Luo, Z. Wang, Z. Yuan, C. Du, and Y. Pan, “Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex,” Opt. Lett. 33, 1156-1158 (2008). [CrossRef] [PubMed]
  18. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116-3121 (2003). [PubMed]
  19. T. Maekawa, C. Tommasino, H. M. Shapiro, J. Keifer-Goodman, and R. W. Kohlenberger, “Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat,” Anesthesiology 65, 144-151 (1986). [CrossRef] [PubMed]
  20. C. Lenz, T. Frietsch, C. Futterer, A. Rebel, K. van Ackern, W. Kuschinsky, and K. F. Waschke, “Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane,” Anesthesiology 91, 1720-1723 (1999). [CrossRef] [PubMed]
  21. H. Iida, C. A. Gleason, T. P. O'Brien, and R. J. Traystman, “Fetal response to acute fetal cocaine injection in sheep,” Am. J. Physiol. 267, H1968-H1975 (1994). [PubMed]
  22. C. A. Gleason and R. J. Traystman, “Cerebral responses to maternal cocaine injection in immature fetal sheep,” Pediatr. Res. 38, 943-948 (1995). [CrossRef] [PubMed]
  23. E. K. Anday, R. Lien, J. M. Goplerud, D. C. Kurth, and L. M. Shaw, “Pharmacokinetics and effect of cocaine on cerebral blood flow in the newborn,” Dev. Pharmacol. Ther. 20, 35-44 (1993). [PubMed]
  24. M. Yonetani, N. Lajevardi, A. Pastuszko, and M. Delivoria-Papadopoulos, “Dopamine, blood flow and oxygen pressure in brain of newborn piglets,” Biochem. Med. Metabol. Biol. 51, 91-97 (1994). [CrossRef]
  25. M. R. Stankovic, A. Fujii, D. Maulik, D. Kirby, and P. G. Stubblefield, “Optical brain monitoring of the cerebrovascular effects induced by acute cocaine exposure in neonatal pigs,” J. Maternal-Fetal Investig. 8, 108-112 (1998).
  26. M. L. Albuquerque, C. L. Monito, L. Shaw, and E. K. Anday, “Ethanol, morphine and barbiturate alter the hemodynamic and cerebral response to cocaine in newborn pigs,” Biol. Neonate 67, 432-440 (1995). [CrossRef] [PubMed]
  27. F. Luo, G. Wu, Z. Li, and S. J. Li, “Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain,” Magn. Reson. Med. 49, 264-270 (2003). [CrossRef] [PubMed]
  28. C. Du, M. Yu, N. D. Volkow, A. P. Koretsky, J. S. Fowler, and H. Benveniste, “Cocaine increases intracellular concentration of calcium in brain independently of its cerebrovascular effects,” J. Neurosci. 26, 11522-11531, (2006). [CrossRef] [PubMed]
  29. C. Du, A. P. Koretsky, I. Izrailtyan, and H. Benveniste, “Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence,” J. Cereb. Blood Flow Metab. 25, 1078-1092 (2005). [CrossRef] [PubMed]
  30. K. Masamoto, T. Kim, M. Fukuda, P. Wang, and S. G. Kim, “Relationship between neural, vascular and BOLD signals in isoflurane-anesthetized rat somatosensory cortex,” Cereb. Cortex 17, 942-950 (2007). [CrossRef]
  31. G. Bonvento, R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz, and P. Lacombe, “Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research?” Brain Res. 665, 213-221 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited