OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 10 — Apr. 1, 2009
  • pp: D299–D306

Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner

Jan Laufer, Edward Zhang, Gennadij Raivich, and Paul Beard  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D299-D306 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of a novel photoacoustic imaging instrument based on a Fabry–Perot polymer film sensing interferometer to imaging the small animal brain is described. This approach provides a convenient backward mode sensing configuration that offers the prospect of overcoming the limitations of existing piezoelectric based detection schemes for small animal brain imaging. Noninvasive images of the vasculature in the mouse brain were obtained at different wavelengths between 590 and 889 nm , showing that the cerebral vascular anatomy can be visualized with high contrast and spatial resolution to depths up to 3.7 mm . It is considered that the instrument has a role to play in characterizing small animal models of human disease and injury processes such as stroke, epilepsy, and traumatic brain injury.

© 2009 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

Original Manuscript: October 6, 2008
Revised Manuscript: January 13, 2009
Manuscript Accepted: January 16, 2009
Published: March 30, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Jan Laufer, Edward Zhang, Gennadij Raivich, and Paul Beard, "Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner," Appl. Opt. 48, D299-D306 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003). [CrossRef] [PubMed]
  2. R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001). [PubMed]
  3. E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007). [CrossRef] [PubMed]
  4. L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  5. M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).
  6. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004). [CrossRef] [PubMed]
  7. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005). [CrossRef] [PubMed]
  8. J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007). [CrossRef]
  9. P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).
  10. H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007). [CrossRef] [PubMed]
  11. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008). [CrossRef] [PubMed]
  12. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008). [CrossRef]
  13. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003). [CrossRef] [PubMed]
  14. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004). [CrossRef] [PubMed]
  15. S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007). [CrossRef] [PubMed]
  16. Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008). [CrossRef] [PubMed]
  17. K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006). [CrossRef] [PubMed]
  18. R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003). [CrossRef] [PubMed]
  19. X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003). [CrossRef] [PubMed]
  20. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008). [CrossRef] [PubMed]
  21. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008). [CrossRef]
  22. E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008). [CrossRef]
  23. E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008). [CrossRef] [PubMed]
  24. K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001). [CrossRef]
  25. E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).
  26. British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.
  27. http://www.medphys.ucl.ac.uk/research/mle/images.htm.
  28. K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007). [CrossRef]
  29. T. J. Allen and P. C. Beard, “Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31, 3462-3464 (2006). [CrossRef] [PubMed]
  30. M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2814 KB)     
» Media 2: MOV (5878 KB)     
» Media 3: MOV (8254 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited