OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 11 — Apr. 10, 2009
  • pp: 1979–1989

Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu

Deyong Sun, Yunmei Li, Qiao Wang, Jay Gao, Heng Lv, Chengfeng Le, and Changchun Huang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 11, pp. 1979-1989 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light scattering properties in such a highly turbid productive lake as Lake Taihu in China were examined through 118 samples collected during three cruises in November 2006, March 2007, and November 2007. The particulate scattering and backscattering coefficients were observed using WETLabs AC-S and ECO-BB9. A power model with a spectral exponent of 0.729 was used to simulate the particulate scattering coefficient ( b p ) spectra. It has a better performance than the linear model. Scattering parameters are more closely related to inorganic suspended matter (ISM) concentration than to other water components, such as total suspended matter (TSM), organic suspended matter (OSM), and chlorophyll a (Chla). This indicates that ISM dominates the scattering signal in the lake. Three discrepancies with oceanic/coastal waters are observed: (a) the backscattering ratio ( b ˜ b p ) decreases with an increase in the ISM concentration because of a highly strong contribution by ISM to b p ; (b) the mass-specific scattering coefficient ( b p m ) exhibits a wider range of variability than that reported in previous studies, which can be attributed to considerable variation in the OSM and ISM distributions; (c) the particle size distribution slope (ξ) is mostly larger than 4.0 in Lake Taihu, whereas it is usually within 3.5–4.0 for marine particles. In addition, the bulk refractive index ( n ¯ p ) calculated according to the Twardowski et al. model [J. Geophys. Res. 106, 14129 (2001)JGREA20148-0227] indicates that some stations ( n ¯ p < 1.07 ) can be regarded as organic-particle dominant. Other stations with high ISM concentrations have a very small n ¯ p value mostly within 1.10–1.17. Overall, the knowledge on the scattering properties gained in this study broadens our understanding of water optics in highly turbid productive water columns.

© 2009 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:

Original Manuscript: November 4, 2008
Revised Manuscript: March 10, 2009
Manuscript Accepted: March 11, 2009
Published: April 1, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Deyong Sun, Yunmei Li, Qiao Wang, Jay Gao, Heng Lv, Chengfeng Le, and Changchun Huang, "Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu," Appl. Opt. 48, 1979-1989 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat, homogeneous ocean,” Appl. Opt. 14, 417-427(1975). [CrossRef] [PubMed]
  2. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977). [CrossRef]
  3. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035-1050(2002). [CrossRef] [PubMed]
  4. B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the Eastern English Channel and southern North Sea,” Remote Sens. Environ. 110, 45-58 (2007). [CrossRef]
  5. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004). [CrossRef]
  6. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003). [CrossRef]
  7. H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739-752 (2007). [CrossRef]
  8. W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U. S. coastal waters,” Appl. Opt. 47, 666-677 (2008). [CrossRef] [PubMed]
  9. B. Q. Qin, W. P. Hu, and W. M. Chen, The Process and Mechanism of Water Environment Evolvement in Taihu Lake (Science Press, 2004).
  10. X. F. Yuan, H. H. Shi, and X. R. Wang, “Temporal and spatial distributions of periphytic algae in Lake Taihu,” J. Agro-Environ. Sci. 25, 1035-1040 (2006).
  11. Y. L. Zhang, B. Q. Qin, W. M. Chen, and L. C. Luo, “A study on total suspended matter in Lake Taihu,” Resource Environ. Yangtze Basin 13(3), 266-271 (2004).
  12. X. Huang, Eco-Investigation, Observation and Analysis of Lakes (Standard Press of China, 1999), pp. 77-99.
  13. Y. W. Chen, K. N. Chen, and Y. H. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18, 550-552 (2006).
  14. C. Moore, A. Barnard, and D. Hankins, “Spectral Absorption and Attenuation Meter (ac-s) User's Guide, Revision A (WET Labs, 2004), pp. 5-20.
  15. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption of visible and near-infrared light in water: the dependence on temperature and salinity,” Appl. Opt. 36, 6035-6046 (1997). [CrossRef] [PubMed]
  16. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006). [CrossRef] [PubMed]
  17. J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44-55 (1994). [CrossRef]
  18. C. Moore, A. Barnard, and D. Hankins, Scattering Meter (BB9) User's Guide, Revision A (WET Labs, 2005), pp. 2-13.
  19. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steemann Nielson, eds. (Academic, 1974), pp. 1-24.
  20. E. Boss and W. S. Pegau, “The relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503-5507 (2001). [CrossRef]
  21. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26, 43-53 (1981). [CrossRef]
  22. S. Green and N. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903-1916 (1994). [CrossRef]
  23. D. J. Keith, J. A. Yoder, and S. A. Freeman, “Spatial and temporal distribution of colored dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: implications for phytoplankton in coastal waters,” Estuar. Coast. Shelf Sci. 55, 705-717 (2002). [CrossRef]
  24. M.S.Twardowski, E. Boss, J.B.MacDonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 1412914142 (2001). [CrossRef]
  25. F. Volz, “Die Optik und Meterologie der atmospharischen Trubung,” in Ber. des Detsch. Wetterdienstes 13 (Bad Kissingen, 1954), Vol. 2, pp. 3-47.
  26. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “The spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509-9516 (2001). [CrossRef]
  27. A. Morel, “Diffusion de la lumiere par les eaux de mer: Resultats experimentaux et approche theorique,” in Optics of the Sea, AGARD Lecture Series (North Atlantic Treaty Organization, 1973), Vol. 61, pp. 3.1.1-3.1.76.
  28. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its relation to the size distribution of oceanic particles,” Appl. Opt. 40, 4885-4893(2001). [CrossRef]
  29. A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109, 464-472 (2007). [CrossRef]
  30. G. Dall'Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176-187 (2005). [CrossRef]
  31. A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112, 3582-3593 (2008). [CrossRef]
  32. R. W. Gould Jr., R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377-2383 (1999). [CrossRef]
  33. A. Morel, B. Gentili, M. Chami, and J. Ras, “Bio-optical properties of high chlorophyll Case 1 waters and of yellow-substance-dominated Case 2 waters,” Deep-Sea Res. I 53, 1439-1459(2006). [CrossRef]
  34. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (black Sea),” J. Geophys. Res. 110, (2005). [CrossRef]
  35. D. McKee and A. Cunningham, “Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas,” Appl. Opt. 44, 126-135 (2005). [PubMed]
  36. M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006). [CrossRef] [PubMed]
  37. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019-7031 (2007). [CrossRef] [PubMed]
  38. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle size-distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070-7077 (1994). [CrossRef] [PubMed]
  39. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7763-7780(2001). [CrossRef]
  40. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44, 1667-1680 (2005). [CrossRef] [PubMed]
  41. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847-858 (1998). [CrossRef]
  42. M. Chami, D. Mckee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45, 9210-9220 (2006). [CrossRef] [PubMed]
  43. E. T. Baker and J. W. Lavelle, “The effect of particles size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197-8203 (1984). [CrossRef]
  44. A. Hofmann and J. Dominik, “Turbidity and mass concentration of suspended matter in lake water: a comparison of two calibration methods,” Aquat. Sci. 57, 54-69 (1995). [CrossRef]
  45. E. T. Baker, D. A. Tennant, R. A. Feely, G. T. Lebon, and S. L. Walker, “Field and laboratory studies on the effect of particle size and composition on optical backscattering measurements in hydrothermal plumes,” Deep-Sea Res. I 48, 593-604(2001). [CrossRef]
  46. Q. J. Song and J. W. Tang, “The study on the scattering properties in the Huanghai Sea and East China Sea,” Acta Oceanol. Sin. 28, 56-63 (2006).
  47. K. L. Carder, R. D. Tomlinson, and G. F. Beardsley Jr., “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17, 833-839(1972). [CrossRef]
  48. S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270-1277 (1988). [CrossRef] [PubMed]
  49. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223-2249(1996). [CrossRef]
  50. D. Stramski, A. Bricaud, and A. Morel, “Modelling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929-2945 (2001). [CrossRef]
  51. D.R.Lide, ed., “Physical and optical properties of minerals,” in CRC Handbook of Chemistry and Physics, 77th ed. (CRC Press, 1997), pp. 4130-4136.
  52. J. R. Hunt, “Prediction of oceanic particle size distributions from coagulation and sedimentation mechanisms, in particulates in water,” Advances in Chemistry Series No. 189, M. C. Kavanaugh and J. O. Leckie, eds. (American Chemical Society, 1980), pp. 243-257.
  53. A. B. Burd and G. A. Jackson, “Modeling steady-state particle size spectra,” Environmental Sci. Technol. 36, 323-327(2002). [CrossRef]
  54. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822-2830 (1970). [CrossRef]
  55. H. Loisel, J.-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006). [CrossRef]
  56. D. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68, 305-316 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited