OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 11 — Apr. 10, 2009
  • pp: 1990–1997

Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy

Yu Fu, Hongjian Shi, and Hong Miao  »View Author Affiliations

Applied Optics, Vol. 48, Issue 11, pp. 1990-1997 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measuring deformation of vibrating specimens whose dimensions are in the submillimeter range introduces a number of difficulties using laser interferometry. Normal interferometry is not suitable because of a phase ambiguity problem. In addition, the noise effect is much more serious in the measurement of small objects because a high-magnification lens is used. We present a method for full-field measurement of displacement, velocity, and acceleration of a vibrating miniature object based on image-plane digital holographic microscopy. A miniature cantilever beam is excited by a piezoelectric transducer stage with a sinusoidal configuration. A sequence of digital holograms is captured using a high-speed digital holographic microscope. Windowed Fourier analysis is applied in the spatial and spatiotemporal domains to extract the displacement, velocity and acceleration. The result shows that a combination of image-plane digital holographic microscopy and windowed Fourier analyses can be used to study vibration without encountering a phase ambiguity problem, and one can obtain instantaneous kinematic parameters on each point.

© 2009 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(090.2880) Holography : Holographic interferometry
(110.0180) Imaging systems : Microscopy
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Holographic Interferometry

Original Manuscript: January 2, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 20, 2009
Published: April 1, 2009

Yu Fu, Hongjian Shi, and Hong Miao, "Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy," Appl. Opt. 48, 1990-1997 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44 (1), 57-69 (2008). [CrossRef]
  2. M. Kujawinska, “Modern optical measurement station for micro-materials and micro-elements studies,” Sens. Actuators A 99, 144-153 (2002). [CrossRef]
  3. L. Yang and P. Colbourne, “Digital laser microinterferometer and its applications,” Opt. Eng. 42, 1417-1426 (2003). [CrossRef]
  4. S. H. Wang, C. Quan, and C. J. Tay, “A genetic optical interferometric inspection on micro-deformation,” Optik (Jena) 115 (11-12), 564-568 (2004).
  5. S. H. Wang, C. J. Tay, C. Quan, and H. M. Shang, “Determination of deflection and Young's modulus of a micro-beam by means of interferometry,” Meas. Sci. Technol. 12, 1279-1286(2001). [CrossRef]
  6. F. Dubois, O. Monnom, C. Yourassowsky, and J. C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41, 2621-2626 (2002). [CrossRef] [PubMed]
  7. S. Petitgrand and A. Bosseboeuf, “Simultaneous mapping of out-of-plane vibrations of MEMS with (sub)nanometer resolution,” J. Micromech. Microeng. 14 (9), S97-S101 (2004). [CrossRef]
  8. R. Jozwicki, M. Kujavinska, and K. Patorski, “Application of lasers in precise measurement of microelements,” Proc. SPIE 5229, 266-274 (2003). [CrossRef]
  9. P. Castellini, M. Martarelli, and E. P. Tomasini. “Laser Doppler vibrometry: development of advanced solutions answering to technology's needs,” Mech. Syst. Signal Process. 20, 1265-1285 (2006). [CrossRef]
  10. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  11. J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556-6563 (1999). [CrossRef]
  12. J. M. Huntley, “Challenges in phase unwrapping,” in Trends in Optical Nondestructive Testing and Inspection, P. K. Rastogi and D. Inaudi, eds. (Elsevier Science, 2000), pp. 37-44. [CrossRef]
  13. H. J. Tiziani, “Spectral and temporal phase evaluation for interferometry and speckle applications,” in Trends in Optical Nondestructive Testing and Inspection, P. K. Rastogi and D. Inaudi, eds. (Elsevier Science, 2000), pp. 323-343. [CrossRef]
  14. G. H. Kaufmann and G. E. Galizzi, “Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods,” Appl. Opt. 41, 7254-7263 (2002). [CrossRef] [PubMed]
  15. Y. Fu, C. J. Tay, C. Quan, and L. J. Chen, “Temporal wavelet analysis for deformation and velocity measurement in speckle interferometry,” Opt. Eng. 43, 2780-2787 (2004). [CrossRef]
  16. V. D. Madjarova, H. Kadona, and S. Toyooka, “Dynamic electronic speckle pattern interferometry (DESPI) phase analyses with temporal Hilbert transform,” Opt. Express 11 (6), 617-623 (2003). [CrossRef] [PubMed]
  17. S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?,” Opt. Express 17 (2), 611-613 (2009). [CrossRef] [PubMed]
  18. G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry using the Fouier transform method with and without a temporal carrier,” Opt. Commun. 217, 141-149 (2003). [CrossRef]
  19. Y. Fu, C. J. Tay, C. Quan, and H. Miao, “Wavelet analysis of speckle patterns with a temporal carrier,” Appl. Opt. 44, 959-965 (2005). [CrossRef] [PubMed]
  20. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  21. G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199-219 (1997). [CrossRef]
  22. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Time-averaged digital holography,” Opt. Lett. 28, 1900-1902 (2003). [CrossRef] [PubMed]
  23. Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46, 8645-8655 (2007). [CrossRef] [PubMed]
  24. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of digital hologram sequence,” Appl. Opt. 46, 5719-5727 (2007). [CrossRef] [PubMed]
  25. K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304-317 (2007). [CrossRef]
  26. K. Qian, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695-2702 (2004). [CrossRef]
  27. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001). [CrossRef]
  28. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001(1999). [CrossRef]
  29. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  30. F. Charriere, A. Marian, F. Montfort, J. Kuhn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  31. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008). [CrossRef] [PubMed]
  32. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006). [CrossRef] [PubMed]
  33. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  34. S. Mallat, A Wavelet Tour of Signal Processing (Academic, 1998).
  35. K. Qian, Y. Fu, Q. Liu, H. S. Seah, and A. Asundi, “Generalized three-dimensional windowed Fourier transform for fringe analysis,” Opt. Lett. 31, 2121-2123 (2006). [CrossRef] [PubMed]
  36. H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205-210 (1999). [CrossRef]
  37. K. Qian, T. H. N. Le, F. Lin, and H. S. Seah, “Comparative analysis on some filters for wrapped phase maps,” Appl. Opt. 46, 7412-7418 (2007). [CrossRef]
  38. G. Cloud, Optical Methods of Engineering Analysis (Cambridge U. Press, 1998).
  39. M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signal and fringe patterns,” Proc. SPIE 3813, 692-702 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited