OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 11 — Apr. 10, 2009
  • pp: 2058–2066

Influence of optical standing waves on the femtosecond laser-induced forward transfer of transparent thin films

David P. Banks, Kamal Kaur, and Robert W. Eason  »View Author Affiliations


Applied Optics, Vol. 48, Issue 11, pp. 2058-2066 (2009)
http://dx.doi.org/10.1364/AO.48.002058


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of the formation of an optical standing wave during femtosecond laser-induced forward transfer of transparent films is analyzed using a numerical interference model. The dependence of the intensity distribution on a number of easily controllable experimental parameters is investigated. Results of the model are compared to experimental studies of the transfer of gadolinium gallium oxide (GdGaO) with a polymer sacrificial layer. The model allows us to explain the observed variation in deposit morphology with the size of the air gap, and why forward transfer of the GdGaO was possible below the ablation thresholds of polymer and oxide.

© 2009 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5470) Materials : Polymers
(190.4180) Nonlinear optics : Multiphoton processes
(310.6860) Thin films : Thin films, optical properties
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Materials Processing

History
Original Manuscript: January 7, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 20, 2009
Published: April 2, 2009

Citation
David P. Banks, Kamal Kaur, and Robert W. Eason, "Influence of optical standing waves on the femtosecond laser-induced forward transfer of transparent thin films," Appl. Opt. 48, 2058-2066 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-11-2058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bohandy, B. Kim, and F. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538-1539 (1986). [CrossRef]
  2. D. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005). [CrossRef]
  3. F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5, 1490-1494 (1987). [CrossRef]
  4. R. Baseman and N. Froberg, “Minimum fluence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56, 1412-1414 (1990). [CrossRef]
  5. Z. Toth, Z. Kantor, P. Mogyorosi, and T. Szorenyi, “Surface patterning by pulsed laser induced transfer of metals and compounds,” Proc. SPIE 1279, 150-157 (1990). [CrossRef]
  6. H. Esrom, J. Zhang, U. Kogelschatz, and A. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films,” Appl. Surf. Sci. 86, 202-207(1995). [CrossRef]
  7. I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr,” Appl. Surf. Sci. 208-209, 177-180 (2003). [CrossRef]
  8. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A 69, S275-S278 (1999). [CrossRef]
  9. R. Bahnisch, W. Gross, and A. Menschig, “Single-shot, high repetition rate metallic pattern transfer,” Microelectron. Eng. 50, 541-546 (2000). [CrossRef]
  10. B. Tan, K. Venkatakrishnan, and K. Tok, “Selective surface texturing using femtosecond pulsed laser induced forward transfer,” Appl. Surf. Sci. 207, 365-371 (2003). [CrossRef]
  11. L. Landstrom, J. Klimstein, G. Schrems, K. Piglmayer, and D. Bauerle, “Single-step patterning and the fabrication of contact masks by laser-induced forward transfer,” Appl. Phys. A 78, 537-548 (2004). [CrossRef]
  12. I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol. 36, 180-187 (1992).
  13. I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579-582 (1998). [CrossRef]
  14. H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of tio-au nanocomposite films for maskless patterning,” Appl. Phys. Lett. 86, 114104 (2005). [CrossRef]
  15. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high- Tc ybacuo and bisrcacuo superconducting thin films,” J. Appl. Phys. 66, 457-459 (1989). [CrossRef]
  16. S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci. 86, 208-212 (1995). [CrossRef]
  17. S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006). [CrossRef]
  18. B. Thomas, A. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254, 1206-1210 (2007). [CrossRef]
  19. Y. Tsuboi, Y. Furuhata, and N. Kitamura, “A sensor for adenosine triphosphate fabricated by laser-induced forward transfer of luciferase onto a poly(dimethylsiloxane) microchip,” Appl. Surf. Sci. 253, 8422-8427 (2007). [CrossRef]
  20. L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006). [CrossRef]
  21. D. Banks, C. Grivas, J. Mills, I. Zergioti, and R. Eason, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006). [CrossRef]
  22. S. Bera, A. Sabbah, J. Yarbrough, C. Allen, B. Winters, C. Durfee, and J. Squier, “Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminium films,” Appl. Opt. 46, 4650-4659 (2007). [CrossRef] [PubMed]
  23. C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253, 8328-8333 (2007). [CrossRef]
  24. F. Claeyssens, A. Klini, A. Mourka, and C. Fotakis, “Laser patterning of zn for zno nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum,” Thin Solid Films 515, 8529-8533 (2007). [CrossRef]
  25. I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247, 584-589 (2005).
  26. D. Banks, C. Grivas, I. Zergioti, and R. Eason, “Ballistic laser-assisted solid transfer (blast) from a thin film precursor,” Opt. Express 16, 3249-3254 (2008). [CrossRef] [PubMed]
  27. A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys. A 69, S279-S284 (1999). [CrossRef]
  28. W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411-421 (1993).
  29. P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85, 1639-1641 (2004). [CrossRef]
  30. G. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82, 463-465(2003). [CrossRef]
  31. R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91, 061103(2007). [CrossRef]
  32. T. Smausz, B. Hopp, G. Kecskemeti, and Z. Bor, “Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer,” Appl. Surf. Sci. 252, 4738-4742(2006). [CrossRef]
  33. R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer: influence of the material properties,” Appl. Surf. Sci. 254, 1322-1326(2007). [CrossRef]
  34. N. Kattamis, P. Purnick, R. Weiss, and C. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007). [CrossRef]
  35. D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83, 38003 (2008). [CrossRef]
  36. M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nuesch, and D. Rentsch, “Aryltriazene photopolymers for uv-laser applications: Improved synthesis and photodecomposition study,” Macromol. Chem. Phys. 208, 277-286 (2007). [CrossRef]
  37. F. Dill, “Optical lithography,” IEEE Trans. Electron Devices ED-22, 440-444 (1975). [CrossRef]
  38. C. Mack, “Analytical expression for the standing wave intensity in photoresist,” Appl. Opt. 25, 1958-1961 (1986). [CrossRef] [PubMed]
  39. J. Bonse, J. Solis, L. Urech, T. Lippert, and A. Wokaun, “Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films,” Appl. Surf. Sci. 253, 7787-7791 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited