OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 11 — Apr. 10, 2009
  • pp: 2078–2085

Optical full Hadamard matrix multiplexing and noise effects

L. Streeter, G. R. Burling-Claridge, M. J. Cree, and R. Künnemeyer  »View Author Affiliations

Applied Optics, Vol. 48, Issue 11, pp. 2078-2085 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hadamard multiplexing provides a considerable SNR boost over additive random noise but Poisson noise such as photon noise reduces the boost. We develop the theory for full H-matrix Hadamard transform imaging under additive and Poisson noise effects. We show that H-matrix encoding results in no effect on average on the noise level due to Poisson noise sources while preferentially reducing additive noise. We use this result to explain the wavelength-dependent varying SNR boost in a Hadamard hyperspectral imager and argue that such a preferential boost is useful when the main noise source is indeterminant or varying.

© 2009 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(350.6980) Other areas of optics : Transforms
(110.1758) Imaging systems : Computational imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: November 24, 2008
Revised Manuscript: March 2, 2009
Manuscript Accepted: March 3, 2009
Published: April 2, 2009

L. Streeter, G. R. Burling-Claridge, M. J. Cree, and R. Künnemeyer, "Optical full Hadamard matrix multiplexing and noise effects," Appl. Opt. 48, 2078-2085 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Harwit and N. Sloan, Hadamard Transform Optics (Academic, 1979).
  2. R. Damaschini, “Limitation of the multiplex gain in HADAMARD transform spectroscopy,” Pure Appl. Opt. 2, 173-177(1993). [CrossRef]
  3. G. Nitzsche and R. Riesenberg, “Noise, fluctuation, and HADAMARD-transform spectrometry,” Proc. SPIE 5111, 273-282 (2003). [CrossRef]
  4. A. Wuttig, “Optimal transformations for optical multiplex measurements in the presence of photon noise,” Appl. Opt. 44, 2710-2719 (2005). [CrossRef] [PubMed]
  5. N. Ratner, Y. Schechner, and F. Goldberg, “Optimal multiplexed sensing: bounds, conditions and a graph theory link,” Opt. Express 15, 17072-17092 (2007). [CrossRef] [PubMed]
  6. D. S. Davis, “Multiplexed imaging by means of optically generated Kronecker products: 1. the basic concept,” Appl. Opt. 34, 1170-1176 (1995). [CrossRef] [PubMed]
  7. W. Fateley, R. Hammaker, R. DeVerse, R. Coifman, and F. Geshwind, “The other spectroscopy: demonstration of a new de-dispersion imaging spectrograph,” Vib. Spectrosc. 29, 163-170 (2002). [CrossRef]
  8. L. Streeter, G. Burling-Claridge, M. Cree, and R. Künnemeyer, “Visible/near infrared hyperspectral imaging via spatial illumination source modulation,” J. Near Infrared Spectrosc. 15, 395-399 (2007). [CrossRef]
  9. Q. Hanley, P. Verveer, D. Arndt-Jovin, and T. Jovin, “Three-dimensional spectral imaging by HADAMARD transform spectroscopy in a programmable array microscope,” J. Microsc. 197, 5-14 (2000). [CrossRef] [PubMed]
  10. R. DeVerse, R. Hammaker, and W. Fateley, “Realization of the HADAMARD multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer,” Appl. Spectrosc. 54, 1751-1758 (2000). [CrossRef]
  11. W. Fateley, R. Hammaker, and R. DeVerse, “Modulations used to transmit information in spectrometry and imaging,” J. Mol. Struct. 550-551, 117-122 (2000). [CrossRef]
  12. R. DeVerse, R. Hammaker, and W. Fateley, “Hadamard transform raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177-186 (1999). [CrossRef]
  13. D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc SPIE 6065, 606509 (2006). [CrossRef]
  14. M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “An architecture for compressive imaging,” in 2006 IEEE International Conference on Image Processing (IEEE, 2006), pp. 1273-1276.
  15. L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett. 31, 469-470 (1995). [CrossRef]
  16. L. Streeter, G. Burling-Claridge, M. Cree, and R. Künnemeyer, “Reference beam method for source modulated HADAMARD multiplexing,” Proc SPIE 6812, 68160J1 (2008).
  17. K. Hassler, T. Anhut, and T. Lasser, “Time-resolved HADAMARD fluorescence imaging,” Appl. Opt. 44, 7564-7572 (2005). [CrossRef] [PubMed]
  18. K. Pearson, “Mathematical contributions to the theory of evolution--on a form of spurious correlation which may arise when indices are used in the measurement of organs,” Proc. R. Soc. London 60, 489-498 (1897).
  19. L. Eldeń, Fundamentals of Algorithms: Matrix Methods in Data Mining and Pattern Recognition (SIAM, 2007), Chap. 6. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited