OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 11 — Apr. 10, 2009
  • pp: 2188–2202

Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements

Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama  »View Author Affiliations

Applied Optics, Vol. 48, Issue 11, pp. 2188-2202 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1917 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study proposes a piecewise Wiener estimation method to reconstruct a spectral reflectance image from a three-band image by multipoint spectral information collected simultaneously with image acquisition. A three-band image is divided into several blocks and the spectral estimation is carried out using the Wiener estimation matrix assigned to each block. Each Wiener estimation matrix is constructed on the basis of spectral measurement data. The experimental results show that the proposed method reduces the average estimation error monotonically as the number of spectral measurements increases. In addition, the computational time of the piecewise Wiener estimation costs only severalfold of the computational time of the conventional single-matrix method.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(330.1690) Vision, color, and visual optics : Color
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Image Processing

Original Manuscript: July 14, 2008
Revised Manuscript: January 8, 2009
Manuscript Accepted: January 14, 2009
Published: April 8, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama, "Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements," Appl. Opt. 48, 2188-2202 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. D. Berns and R. S. Berns, “Analysis of multispectral image capture,” in Proceedings of the 4th Color Imaging Conference (Society of Imaging Science and Technology, 1996), pp. 19-22.
  2. M. Hauta-Kasari, K. Miyazawa, S. Toyooka, and J. Parkkinen, “Spectral vision system for measuring color images,” J. Opt. Soc. Am. A 16, 2352-2362 (1999). [CrossRef]
  3. B. Hill, “Color capture, color management and the problem of metamerism,” Proc. SPIE 3963, 2-14 (2000). [CrossRef]
  4. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating spectral reflectance of art paintings,” Appl. Opt. 39, 6621-6632 (2000). [CrossRef]
  5. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002). [CrossRef]
  6. M. Yamaguchi, R. Iwama, Y. Ohya, T. Obi, N. Ohyama, Y. Komiya, and T. Wada, “Natural color reproduction in the television system for telemedicine,” Proc. SPIE 3031, 482-489 (1997). [CrossRef]
  7. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and N. Ohyama, “Color image reproduction based on the multispectral and multiprimary imaging: experimental evaluation,” Proc. SPIE 4663, 15-26 (2001).
  8. M. Yamaguchi, H. Hideaki, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imag. Sci. Technol. 52, 010201 (2008). [CrossRef]
  9. H. Sugiura, T. Kuno, N. Watanabe, N. Matoba, J. Hayashi, and Y. Miyake, “Development of highly accurate multispectral cameras,” presented at International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, Chiba, Japan, 21-22 October 1999.
  10. H. Fukuda, T. Uchiyama, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Development of 16-band multispectral image archiving system,” Proc. SPIE 5667, 136-145 (2005). [CrossRef]
  11. K. Ohsawa, T. Ajito, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imag. Sci. Technol. 48, 85-92 (2004).
  12. D. Dupont, “Study of the reconstruction of reflectance curves based on tristimulus values: comparison of methods of optimization,” Color Res. Appl. 27, 88-99 (2002). [CrossRef]
  13. J. M. DiCarlo and B. A. Wandell, “Spectral estimation theory: beyond linear but before Bayesian,” J. Opt. Soc. Am. A 20, 1261-1270 (2003). [CrossRef]
  14. H. Shen, P. Cai, S. Shao, and J. H. Xin, “Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation,” Opt. Express 15, 15545-15554 (2007). [CrossRef] [PubMed]
  15. P. Morovic and G. D. Finlayson, “Metamer-set-based approach to estimating surface reflectance from camera RGB,” J. Opt. Soc. Am. A 23, 1814-1822 (2006). [CrossRef]
  16. F. Ayala, J. F. Echavarri, and P. Renet, “Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors,” J. Opt. Soc. Am. A 23, 2020-2026 (2006). [CrossRef]
  17. X. Zhang and H. Xu, “Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis,” J. Opt. Soc. Am. A 25371-378 (2008). [CrossRef]
  18. Y. Murakami, T. Obi, M. Yamaguchi and N. Ohyama, “Nonlinear estimation of spectral reflectance based on Gaussian mixture distribution for color image reproduction,” Appl. Opt. 41, 4840-4847 (2002).
  19. V. Bochko, N. Tsumura, and Y. Miyake, “Spectral color imaging system for estimating spectral reflectance of paint,” J. Imag. Sci. Technol. 51, 70-78 (2007). [CrossRef]
  20. K. Ietomi, Y. Murakami, M. Yamaguchi, and N. Ohyama, MAP estimation for spectral image reconstruction using 3-band image and multipoint spectral measurements, presented at 9th International Symposium on Multispectral Colour Science and Application, Taipei, Taiwan, May 2007.
  21. Y. Murakami, K. Ietomi, M. Yamaguchi, and N. Ohyama, “MAP estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46, 7068-7082 (2007). [CrossRef] [PubMed]
  22. J. C. Price, “Combining panchromatic and multispectral imagery from dual resolution satellite instruments,” Remote Sens. Environ. 21, 119-128 (1987). [CrossRef]
  23. D. P. Filiberti, S. E. Marsh, and R. A. Schowengerdt, “Synthesis of imagery with high spatial and spectral resolution from multiple image sources,” Opt. Eng. 33, 2520-2528 (1994). [CrossRef]
  24. R. C. Hardie, M. T. Eismann, and G. L. Wilson, “MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor,” IEEE Trans. Image Process. 13, 1174-1184(2004). [CrossRef] [PubMed]
  25. M. T. Eismann and R. C. Hardie, “Application of the stochastic mixing model to hyperspectral resolution enhancement,” IEEE Trans. Geosci. Remote Sensing 42, 1924-1933(2004). [CrossRef]
  26. M. T. Eismann and R. C. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” IEEE Trans. Geosci. Remote Sensing 43, 455-465 (2005). [CrossRef]
  27. W. K. Pratt, Digital Image Processing (Wiley, 1978), pp. 410-415.
  28. J. S. Lim, “Image restoration by short space spectral subtraction,” IEEE Trans. Acoust. Speech Signal Process. 28191-197 (1980). [CrossRef]
  29. Colorimetry, 3rd ed., CIE Technical Report (Commission Internationale de l'Eclairage Central Bureau, 2004).
  30. W. K. Pratt and C. E. Mancill, “Spectral estimation techniques for the spectral calibration of a color image scanner,” Appl. Opt. 15, 73-75 (1976). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited