OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2220–2227

Numerical model of an Er 3 + - Tm 3 + - Pr 3 + -codoped fiber amplifier pumped with an 800 nm laser diode

Chun Jiang and Li Jin  »View Author Affiliations

Applied Optics, Vol. 48, Issue 12, pp. 2220-2227 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical model of an Er 3 + - Tm 3 + - Pr 3 + codoped fiber amplifier pumped with an 800 nm laser for the first time to the best of our knowledge. The rate and power propagation equations are solved numerically, and the dependence of the gains at 1310, 1470, and 1530 nm windows on the active ion concentrations and fiber length are calculated. The results show that with pump power of 20 mW , when Pr 3 + - Tm 3 + - Er 3 + concentrations are around 2.0 × 10 24 , 2.0 × 10 24 , and 2.26 × 10 24 ( ions / m 3 ), respectively, the signals at 1310, 1470, and 1530 nm windows may be equally amplified in the active fiber with a length of 1.3 m .

© 2009 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Lasers and Amplifiers

Original Manuscript: December 11, 2008
Revised Manuscript: February 16, 2009
Manuscript Accepted: February 20, 2009
Published: April 13, 2009

Chun Jiang and Li Jin, "Numerical model of an Er3+-Tm3+-Pr3+-codoped fiber amplifier pumped with an 800 nm laser diode," Appl. Opt. 48, 2220-2227 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” Optical Fiber Conference (OSA, 2002), pp. 116-117.
  2. C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” 9th Opto-Electronics and Communications Conference and 3rd International Conference on Optical Internet (Pacifica, 2004), [PubMed]
  3. C. R. Giles and E. Desuvire, “Modeling erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991). [CrossRef]
  4. C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium-doped fiber amplifier in parallel configuration,” IEEE Photonics Technol. Lett. 16, 1637-1639 (2004). [CrossRef]
  5. Y. B. Lu, P. L. Chu, A. Alphones, and P. Shum, “A 105 nmUltrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration,” IEEE Photonics Technol. Lett. 16, 1640-1642 (2004). [CrossRef]
  6. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 16, 777-779 (2004). [CrossRef]
  7. R. M. Percival and J. R. Williams, “Highly efficient 1064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier,” Electron. Lett. 30, 1684-1685 (1994). [CrossRef]
  8. T. Kasamatsu, Y. Yano, and T. Ono, “1.49 um-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol. 20, 1826-1838 (2002). [CrossRef]
  9. Y. Ohishi, T. Kanamori, and T. Nishi, “Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm,” IEEE Photonics Technol. Lett. 4, 1338-1340 (1992). [CrossRef]
  10. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fiber,” Opt. Express 12, 2429-2434 (2004). [CrossRef] [PubMed]
  11. H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ codoped silica fiber,” Chem. Phys. Lett. 367,507-509 (2003). [CrossRef]
  12. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B 39, 80-90 (1989). [CrossRef]
  13. S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, “Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping,” J. Lumin. 65, 247-253 (1995). [CrossRef]
  14. X. Zou, A. Shikida, H. Yanagita, and H. Toratani, “Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181, 100-109 (1995). [CrossRef]
  15. W. Lozano, C. B. de Araujo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318-322 (2002). [CrossRef]
  16. T. J. Whitley and R. Wyatt, “Alternative Gaussians spot size polynomial for use with doped fiber amplifier,” IEEE Photonics Technol. Lett. 5, 1325-1327 (1993). [CrossRef]
  17. F. Di Pasquale and M. Federighi, “Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers,” IEEE J. Quantum Electron. 30, 2127-2131 (1994). [CrossRef]
  18. M. Karasek, “Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699-1705 (1997). [CrossRef]
  19. E. Yahel and A. A. Handy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39, 1444-1451 (2003). [CrossRef]
  20. L. Jin, D. Ma, Y. Ding, and C. Jiang, “theoretical analysis of gain characteristics of Er3+-Tm3+-doped telluride fiber amplifier,” IEEE Photonics Technol. Lett. 18, 460-462 (2006). [CrossRef]
  21. F. X. Gan, Optical and Spectroscopic Properties of Glasses (Shanghai Science and Technology Press, 1992), p. 245.
  22. Y. Hu, S. Jiang, and G. Sorbello, “Numerical analysis of the population dynamics and determination of the upconversion coefficients in a new erbium-doped telluride glass,” J. Opt. Soc. Am. B 18, 1928-1934 (2001). [CrossRef]
  23. S. Shen, A. Jha, X. Liu, and M. Nataly, “Telluride glasses for broadband amplifiers and integrated optics”, J. Am. Ceram. Soc. 85, 1391-1395 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited