OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2228–2235

Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant

Karell Bien-Aimé, Jérome Néauport, Isabelle Tovena-Pecault, Evelyne Fargin, Christine Labrugère, Colette Belin, and Michel Couzi  »View Author Affiliations

Applied Optics, Vol. 48, Issue 12, pp. 2228-2235 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the effect of organic molecular contamination on single shot laser induced damage density at the wavelength of 351 nm , with a 3 ns pulse length. Specific contamination experiments were made with dioctylphthalate (DOP) in liquid or gaseous phase, on the surface of fused silica polished samples, bare or solgel coated. Systematic laser induced damage was observed only in the case of liquid phase contamination. Different chemical and morphological characterization methods were used to identify and understand the damage process. We demonstrate that the contaminant morphology, rather than its physicochemical nature, can be responsible for the decrease of laser induced damage threshold of optics.

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 10, 2008
Revised Manuscript: March 9, 2009
Manuscript Accepted: March 25, 2009
Published: April 14, 2009

Karell Bien-Aimé, Jérome Néauport, Isabelle Tovena-Pecault, Evelyne Fargin, Christine Labrugère, Colette Belin, and Michel Couzi, "Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant," Appl. Opt. 48, 2228-2235 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38-42 (1996).
  2. B. M. Van Wonterghem, S. C. Burkhart, C. A. Haynam, K. R. Manes, C. D. Marshall, J. E. Murray, M. L. Spaeth, D. R. Speck, S. B. Sutton, and P. J. Wegner, “National Ignition Facility commissioning and performance,” Proc. SPIE 5341, 55-65 (2004). [CrossRef]
  3. N. A. Fleurot, A. Adolf, M. Andre, J. L. Bruneau, C. Cavailler, M. Novaro, P. Philippe, F. Kovacs, B. Le Garrec, J. M. Di Nicola, and J. P. Leidinger, “The Ligne d'Integration Laser (LIL): construction status and first 1-w light early results,” Proc. SPIE 4948, 418-424 (2003). [CrossRef]
  4. H. Bercegol, A. Boscheron, J.-M. Di-Nicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Phys. Conf. Ser. 112, 032013 (2008). [CrossRef]
  5. R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19-24 (2002). [CrossRef]
  6. R. R. Kunz and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18, 1306-1313 (2000). [CrossRef]
  7. A. E. Duisterwinkel and A. T. G. M. Bastein, “Feasibility of UV cleaning of 157 nm reticles,” Microelectron. Eng. 67-68, 3-9 (2003). [CrossRef]
  8. F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1 μm lasers,” Proc SPIE 2714, 707-716 (1996). [CrossRef]
  9. C. Scurlock, “A phenomenological study of contamination enhanced laser induced damage in sealed lasers,” Proc. SPIE 5647, 86-91 (2004). [CrossRef]
  10. C. Y. Sheng, “Effect of laser-induced damage on optical windows in the presence of adhesives under simulated thermal-vacuum conditions,” Proc. SPIE 6403, 1-12 (2007).
  11. L. Bruel, “Environmental effects on optical component aging,” Proc. SPIE 4932, 158-169 (2003). [CrossRef]
  12. I. Tovena-Pecault, K. Bien-Aime, and A. Pereira, “Organic molecular contamination in prototype of the future Laser MegaJoule,” presented at Pharmatech, Cork, Ireland, 16-18 September 2008.
  13. D. M. Price, “Vapor pressure determination by thermogravimetry,” Thermochim. Acta 367-368, 253-262 (2001). [CrossRef]
  14. A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc SPIE 6403, 6403-0I-1 (2006).
  15. P. West and N. Starostina, “AFM image artefacts” (LOT-Oriel Gruppe Europa).
  16. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007). [CrossRef] [PubMed]
  17. Joe Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3± w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255-272(2006). [CrossRef]
  18. K. Awazu, “Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser,” J. Non-Cryst. Solids 337, 241-253 (2004). [CrossRef]
  19. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266 nm and longer wavelengths,” Appl. Opt. 38, 2510-2515 (1999). [CrossRef]
  20. B. C. Stuart, M. D. Feit, and A. M. Rubenchik, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995). [CrossRef] [PubMed]
  21. H. G. Floch, P. F. Belleville, P. M. Pegon, C. S. Dijonneau, and J. R. Guerain, “Sol gel optical thin films for an advanced megajoule-class Nd:glass-laser ICF driver,” Proc. SPIE 2714, 521-536 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited