OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2282–2289

Design of microcavity organic light emitting diodes with optimized electrical and optical performance

Albert W. Lu and Aleksandar D. Rakić  »View Author Affiliations

Applied Optics, Vol. 48, Issue 12, pp. 2282-2289 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multivariable and multiobjective organic light emitting diode (OLED) design and optimization procedure is presented that produces a microcavity OLED with optimal optical and electrical characteristics. We propose here a design procedure that splits the design process into two design stages where each stage can be optimized independently. In the first stage we design the OLED with optimal electrical and optical performance, where the mirrors are specified by their optimal spectral reflectivity, transmissivity, absorptance, and the phase shift on reflection. In the second stage we synthesize the top and the bottom multilayer mirrors with a minimal number of layers that satisfy the required optimal spectral dependencies determined in the first part of the design process. As a case study we present an optimized design for a top-emitting OLED with a simple bilayered cavity consisting of N, N -di(naphthalene-1-yl)-N, N -diphenylbenzidine (NPB) as the hole transport layer and tris(8-hydroxyquinoline)aluminium ( Al q 3 ) as the electron transport layer. Conventional devices with an ITO Li F / Al electrode pair and a Ag Ag electrode pair are used as reference devices to benchmark the performance of our design. Electrical simulations using the drift-diffusion model and optical simulations employing the integrated dipole antenna approach are implemented to test the performance of the devices. The optimized device shows improved optical and electrical performance when compared with the reference devices.

© 2009 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(310.4165) Thin films : Multilayer design

ToC Category:

Original Manuscript: March 12, 2009
Manuscript Accepted: March 17, 2009
Published: April 14, 2009

Albert W. Lu and Aleksandar D. Rakić, "Design of microcavity organic light emitting diodes with optimized electrical and optical performance," Appl. Opt. 48, 2282-2289 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001). [CrossRef]
  2. L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. R . 39, 143-222 (2002). [CrossRef]
  3. J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3-9 (2004). [CrossRef]
  4. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987). [CrossRef]
  5. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003). [CrossRef]
  6. C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004). [CrossRef]
  7. M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004). [CrossRef]
  8. K. Neyts, P. De Visschere, D. K. Fork, and G. B. Anderson, “Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode microcavities,” J. Opt. Soc. Am. B 17, 114-119 (2000). [CrossRef]
  9. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15, 962-971 (1998). [CrossRef]
  10. H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003). [CrossRef]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction--part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998). [CrossRef]
  12. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001). [CrossRef]
  13. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003). [CrossRef]
  14. Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004). [CrossRef]
  15. S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002). [CrossRef]
  16. C. D. J. Blades and A. Walker, “Simulation of organic light-emitting diodes,” Synth. Met. 111, 335-340 (2000). [CrossRef]
  17. ATLAS User's Manual--Device Simulation Software (SILVACO International, 2005).
  18. A. H. Macleod, Thin Film Optical Filters (Institute of Physics, 2000).
  19. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030-3038 (1980). [CrossRef]
  20. W. Lukosz, “Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles,” J. Opt. Soc. Am. 71, 744-754 (1981). [CrossRef]
  21. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607-1615 (1977). [CrossRef]
  22. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  23. J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006). [CrossRef]
  24. A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997). [CrossRef]
  25. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002). [CrossRef] [PubMed]
  26. C. L. Mitsas and D. I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678-1683(1995). [CrossRef] [PubMed]
  27. A. B. Djurisic and A. D. Rakic, “Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle,” Appl. Opt. 41, 7650-7656 (2002). [CrossRef]
  28. A. B. Djurisic and A. D. Rakic, “Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes,” Opt. Commun. 236, 303-311 (2004). [CrossRef]
  29. DeBell Design, OptiLayer User's Guide for Windows '95/'98 & NT/4.0 (DeBell Design, 1997).
  30. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508(1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited