OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2290–2302

Atmospheric occultation of optical intersatellite links: coherence loss and related parameters

Nicolas Perlot  »View Author Affiliations

Applied Optics, Vol. 48, Issue 12, pp. 2290-2302 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Rytov theory is applied to find the wave structure function of a laser beam transmitted from one satellite to another and propagating through the turbulent atmosphere. The phase-screen approximation is used. Taking into account refractive-index anisotropy, outer scale, and atmospheric mean-refraction defocusing, we provide expressions of the wave structure function for a spherical wave. The width and time of coherence at the receiver are evaluated. Expression for the beam spread is found using the extended Huygens–Fresnel principle, and beam wander is assessed. Beam wander occurs only for very narrow beams. Links involving low-Earth-orbit and geosynchronous satellites are studied as examples. Finally, conditions where optical tracking is perturbed by the atmosphere are examined.

© 2009 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 20, 2008
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 29, 2009
Published: April 14, 2009

Nicolas Perlot, "Atmospheric occultation of optical intersatellite links: coherence loss and related parameters," Appl. Opt. 48, 2290-2302 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. B. Hubbard, J. R. Jokipii, and B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374-395(1978). [CrossRef]
  2. B. S. Haugstad, “Turbulence in planetary occultations, IV. Power spectra of phase and intensity fluctuations,” Icarus 37, 322-335 (1979). [CrossRef]
  3. R. Woo, A. Ishimaru, and F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695-703 (1980). [CrossRef]
  4. R. Narayan and W. B. Hubbard, “Theory of anisotropic refractive scintillation: application to stellar occultations by Neptune,” Astrophys. J. 325, 503-518 (1988). [CrossRef]
  5. R. Woo, “Spacecraft radio scintillation and solar system exploration,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. U. Zavorotny, eds. (SPIE Press, 1993), pp. 50-83.
  6. A. S. Gurvich and V. L. Brekhovskikh, “Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: a model of scintillation spectra,” Waves Random Media 11, 163-181 (2001). [CrossRef]
  7. A. S. Gurvich, V.Kan, and S. A. Savchenko, “Studying the turbulence and internal waves in the stratosphere from spacecraft observations of stellar scintillation: II. Probability distributions and scintillation spectra,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 37, 452-465 (2001).
  8. A. S. Gurvich, V. F. Sofieva, and F. Dalaudier, “Global distribution of CT2 at altitudes 30-50 km from space-borne observations of stellar scintillation,” Geophys. Res. Lett. 34, L24813 (2007). [CrossRef]
  9. Y. Takayama, T. Jono, Y. Koyama, N. Kura, K. Shiratama, B. Demelenne, Z. Sodnik, A. Bird, and K. Arai, “Observation of atmospheric influence on OICETS inter-orbit laser communication demonstrations,” Proc. SPIE 6709, 67091B (2007). [CrossRef]
  10. A. S. Gurvich and M. S. Belen'kii, “Influence of stratospheric turbulence on infrared imaging,” J. Opt. Soc. Am. A 12, 2517-2522 (1995). [CrossRef]
  11. M. S. Belen'kii, “Effect of the stratosphere on star image motion,” Opt. Lett. 20, 1359-1361 (1995). [CrossRef] [PubMed]
  12. A. S. Gurvich and I. P. Chunchuzov, “Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations,” J. Geophys. Res. 108(D5), 4166 (2003). [CrossRef]
  13. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  14. G. C. Loos and C. B. Hogge, “Turbulence of the upper atmosphere and isoplanatism,” Appl. Opt. 18, 2654-2661 (1979). [CrossRef] [PubMed]
  15. C. Robert, J.-M. Conan, V. Michau, J.-B. Renard, C. Robert, and F. Dalaudier, “Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation,” J. Opt. Soc. Am. A 25, 379-393 (2008). [CrossRef]
  16. F. Dalaudier, V. Kan, and A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40, 866-877(2001). [CrossRef]
  17. L. Andrews, R. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005). [CrossRef]
  18. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427-1431 (1965). [CrossRef]
  19. Y. Cheon and A. Muschinski, “Closed-form approximations for the angle-of-arrival variance of plane and spherical waves propagating through homogeneous and isotropic turbulence,” J. Opt. Soc. Am. A 24, 3478-3492 (2007). [CrossRef]
  20. Y. Takayama, National Institute of Information and Communications Technology (personal communication, 2008).
  21. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, 1971).
  22. R. F. Lutomorski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652-1658 (1971). [CrossRef]
  23. Y. Cai and S. He, “Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31, 568-570 (2006). [CrossRef] [PubMed]
  24. D. H. Tofsted, “Outer-scale effects on beam-wander and angle-of-arrival variances,” Appl. Opt. 31, 5865-5870 (1992). [CrossRef] [PubMed]
  25. L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006). [CrossRef]
  26. D. P. Greenwood, “Tracking turbulence-induced tilt errors with shared and adjacent apertures,” J. Opt. Soc. Am. 67, 282-289 (1977). [CrossRef]
  27. S. Basu and D. Voelz, “Tracking in a ground-to-satellite optical link: effects due to lead-ahead and aperture mismatch, including temporal tracking response,”J. Opt. Soc. Am. A 25, 1594-1608 (2008). [CrossRef]
  28. D. L. Fried and H. T. Yura, “Telescope-performance reciprocity for propagation in a turbulent medium,” J. Opt. Soc. Am. 62, 600-602 (1972). [CrossRef]
  29. R. L. Lucke and C. Y. Young, “Theoretical wave structure function when the effect of the outer scale is significant,” Appl. Opt. 46, 559-569 (2007). [CrossRef] [PubMed]
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  31. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence; Evaluation and Application of Mellin Transforms, 2nd ed. (SPIE Press, 2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited