OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2303–2307

Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber

Young-Geun Han, Youngjoo Chung, Sang Bae Lee, Chang-Seok Kim, Myung Yung Jeong, and Moon Ki Kim  »View Author Affiliations


Applied Optics, Vol. 48, Issue 12, pp. 2303-2307 (2009)
http://dx.doi.org/10.1364/AO.48.002303


View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple configuration for simultaneous measurement of temperature and strain exploiting a temperature-insensitive birefringent interferometer based on a photonic crystal fiber incorporating an erbium-doped fiber (EDF) is investigated. The transmission peak power of the birefringent interferometer incorporating the EDF is changed by the temperature variation because the amplified spontaneous emission of the EDF strongly depends on temperature. The applied strain changes the peak wavelength of the birefringent interferometer connecting with the EDF, which can make it possible to discriminate concurrent sensitivities like temperature and strain. The temperature and strain sensitivities were 0.04 dB / ° C and 1.3 pm / με , respectively.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 22, 2008
Revised Manuscript: February 16, 2009
Manuscript Accepted: March 3, 2009
Published: April 14, 2009

Citation
Young-Geun Han, Youngjoo Chung, Sang Bae Lee, Chang-Seok Kim, Myung Yung Jeong, and Moon Ki Kim, "Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber," Appl. Opt. 48, 2303-2307 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-12-2303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  2. K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561-3567 (2008). [CrossRef] [PubMed]
  3. Y. G. Han, S. B. Lee, C. S. Kim, Jin U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Express 11, 476-481 (2003). [CrossRef] [PubMed]
  4. J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature using a single fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38, 2749-2751 (1999). [CrossRef]
  5. E. D. L. Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481-483 (1997). [CrossRef] [PubMed]
  6. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004). [CrossRef]
  7. D. H. Kim and J. U. Kang, “Analysis of temperature-dependence birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 0750036/1-0750036/5 (2007). [CrossRef]
  8. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, pp. 2835-2839 (2008). [CrossRef] [PubMed]
  9. J. W. Evans, “The birefringence filter,” J. Opt. Soc. Am. 39, 229-242 (1949). [CrossRef]
  10. E. Desurvire, Erbium Doped Fiber Amplifier: Principle and Applications. New York: (Wiley, 1994).
  11. S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006). [CrossRef]
  12. A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007). [CrossRef]
  13. X. Li and W. Zhang, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped tellurite glass,” Physica B 403, 3286-3288 (2008). [CrossRef]
  14. W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited