OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 12 — Apr. 20, 2009
  • pp: 2321–2332

Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar

Nicolas Cézard, Agnès Dolfi-Bouteyre, Jean-Pierre Huignard, and Pierre H. Flamant  »View Author Affiliations

Applied Optics, Vol. 48, Issue 12, pp. 2321-2332 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new concept of spectrum analyzer is proposed for short-range lidar measurements in airborne applications. It implements a combination of two fringe-imaging Michelson interferometers to analyze the Rayleigh–Mie spectrum backscattered by molecules and particles at 355 nm . The objective is to perform simultaneous measurements of four variables: the air speed, the air temperature and density, and the particle scattering ratio. The Cramer–Rao bounds are calculated to evaluate the best expectable measurement accuracies. The performance optimization shows that a Michelson interferometer with a path difference of 3 cm is optimal for air speed measurements in clear air. To optimize density, temperature, and scattering ratio measurements, the second interferometer should be set to a path difference of 10 cm at least; 20 cm would be better to be less sensitive to the actual Rayleigh–Brillouin line shape.

© 2009 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(070.4790) Fourier optics and signal processing : Spectrum analysis
(100.2650) Image processing : Fringe analysis
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: September 26, 2008
Revised Manuscript: March 27, 2009
Manuscript Accepted: March 30, 2009
Published: April 14, 2009

Nicolas Cézard, Agnès Dolfi-Bouteyre, Jean-Pierre Huignard, and Pierre H. Flamant, "Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar," Appl. Opt. 48, 2321-2332 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Targ, M. J. Kavaya, R. M. Huffaker, and R. L. Bowles, “Coherent lidar airborne windshear sensor: performance evaluation,” Appl. Opt. 30, 2013-2026 (1991). [CrossRef] [PubMed]
  2. D. Soreide, R. K. Bogue, L. J. Ehernberger, and H. Bagley, “Coherent lidar turbulence measurement for gust load alleviation,” NASA Technical Memorandum104318 (NASA, 1996).
  3. N. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Navé, “Airborne direct detection UV lidar,” in Proceedings of 23rd International Laser Radar Conference (2006), pp. 167-170.
  4. P. Tchoryk, Jr., C. B. Watkins, S. K. Lindemann, P. B. Hays, and C. A. Nardell, “Molecular optical air data system (MOADS),” Proc. SPIE 4377, 194-204 (2001). [CrossRef]
  5. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm,” Appl. Opt. 35, 7117-7127 (1996). [CrossRef] [PubMed]
  6. J. P. Cariou, B. Augere, D. Goular, J. P. Schlotterbeck, and X. Lacondemine, “All-fiber 1.5 μm CW coherent laser anemometer DALHEC--helicopter flight test analysis,” in Proceedings of 13th Coherent Laser Radar Conference (National Institute of Information and Communications Technology, 2005), pp. 157-160.
  7. S. Rahm, “Measurement of a wind field with an airborne continuous-wave Doppler lidar,” Opt. Lett. 20, 216-218(1995). [CrossRef] [PubMed]
  8. Z-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079-7086 (2002). [CrossRef] [PubMed]
  9. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273-1276 (1989). [CrossRef]
  10. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with a 355 nm molecular Doppler lidar,” Opt. Lett. 25, 1231-1233(2000). [CrossRef]
  11. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063-1065 (2004). [CrossRef] [PubMed]
  12. N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, G. Jenaro-Rabadan, P. Mirand, and M. Reymond, “Flight test of the AWIATOR airborne LIDAR turbulence sensor--first results,” in Proceedings of 14th Coherent Laser Radar Conference (2007).
  13. D. Rees and I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355 nm incoherent Doppler lidar,” Appl. Opt. 29, 4133-4144 (1990). [CrossRef] [PubMed]
  14. V. J. Abreu, J. E. Barnes, and P. B. Hays, “Observation of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509-4514(1992). [CrossRef] [PubMed]
  15. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253-1268 (1997). [CrossRef] [PubMed]
  16. T. D. Irgang, P. B. Hays, and W. R. Skinner, “Two-channel direct-detection Doppler lidar employing a charge-coupled device as a detector,” Appl. Opt. 41, 1145-1155 (2002). [CrossRef] [PubMed]
  17. C. B. Watkins, C. J. Richey, P. Tchoryk, Jr., G. A. Ritter, M. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10-20 (2004). [CrossRef]
  18. D. Bruneau, “Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 41, 503-510 (2002). [CrossRef] [PubMed]
  19. D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42, 1101-1113 (2003). [CrossRef] [PubMed]
  20. C. J. Grund, M. Stephens, and C. Weimer, “Simultaneous profiling of aerosol optical properties, gas chemistry, and winds with optical autocovariance lidar,” in Proceedings of 24th International Laser Radar Conference (2008).
  21. R. L. Hilliard and G. G. Shepherd, “Wide-angle Michelson interferometer for measuring Doppler line widths,” J. Opt. Soc. Am. 56, 362-369 (1966). [CrossRef]
  22. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668-3670 (1983). [CrossRef] [PubMed]
  23. R. Miles, W. Rempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001). [CrossRef]
  24. H. L. Van Trees, in Detection, Estimation and Modulation Theory. Part I: Detection, Estimation, and Linear Modulation Theory (Wiley, 1968), pp. 52-86.
  25. N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Development of a fringe-imaging Michelson interferometer for wind speed measurements using a short-range 355 nm Rayleigh-Mie lidar,” Proc. SPIE 6750, 675008(2007). [CrossRef]
  26. G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
  27. N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Potential of the Michelson interferometer fringe-imaging technique for Rayleigh-Mie spectral analysis,” in Proceedings of 24th International Laser Radar Conference (2008), pp. 231-234.
  28. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829-2834 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited