OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2421–2426

Electromagnetic scattering by densely packed particulate ice at radar wavelengths: exact theoretical results and remote-sensing implications

Michael I. Mishchenko and Li Liu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 13, pp. 2421-2426 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the numerically exact superposition T-matrix method to compute electromagnetic scattering characteristics of a macroscopic volume of a discrete random medium filled with wavelength-sized spherical particles with a refractive index typical of water ice at centimeter wavelengths. Our analysis demonstrates relative strengths of various optical observables in terms of their potential remote-sensing content. In particular, it illustrates the importance of accounting for the forward-scattering interference effect in the interpretation of occultation measurements of planetary rings. We show that among the most robust indicators of the amount of multiple scattering inside a particulate medium are the cross- polarized scattered intensity, the same-helicity scattered intensity, and the circular polarization ratio. We also demonstrate that many predictions of the low-packing-density theories of radiative transfer and coherent backscattering are applicable, both qualitatively and semi-quantitatively, to densely packed media.

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.5620) Coherence and statistical optics : Radiative transfer
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 12, 2009
Manuscript Accepted: March 23, 2009
Published: April 22, 2009

Michael I. Mishchenko and Li Liu, "Electromagnetic scattering by densely packed particulate ice at radar wavelengths: exact theoretical results and remote-sensing implications," Appl. Opt. 48, 2421-2426 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Rignot, “Backscatter model for the unusual radar properties of the Greenland Ice Sheet,” J. Geophys. Res. 100, 9389-9400 (1995). [CrossRef]
  2. S. Nozette, P. Spudis, M. Robinson, D. Bussey, C. Lichtenberg, and R. Bonner, “Integration of lunar polar remote-sensing data sets: evidence for ice at the lunar south pole,” J. Geophys. Res. 106, 23253-23266 (2001). [CrossRef]
  3. J. K. Harmon, M. A. Slade, R. A. Vélez, A. Crespo, M. J. Dryer, and J. M. Johnson, “Radar mapping of Mercury's polar anomalies,” Nature 369, 213-215 (1994). [CrossRef]
  4. S. J. Ostro, “Planetary radar astronomy,” Rev. Mod. Phys. 65, 1235-1279 (1993). [CrossRef]
  5. P. D. Nicholson, R. G. French, D. B. Campbell, J.-L. Margot, M. C. Nolan, G. J. Black, and H. J. Salo, “Radar imaging of Saturn's rings,” Icarus 177, 32-62 (2005). [CrossRef]
  6. V. Rosenbush, N. Kiselev, V. Avramchuk, and M. Mishchenko, “Photometric and polarimetric opposition phenomena exhibited by solar system bodies,” in Optics of Cosmic Dust, G. Videen and M. Kocifaj, eds. (Kluwer Academic, 2002), pp. 191-224.
  7. G.Videen, Ya.Yatskiv, and M.Mishchenko, eds., Photopolarimetry in Remote Sensing (Kluwer Academic, 2004).
  8. M. I. Mishchenko, V. K. Rosenbush, and N. N. Kiselev, “Weak localization of electromagnetic waves and opposition phenomena exhibited by high-albedo atmosphereless solar system objects,” Appl. Opt. 45, 4459-4463 (2006). [CrossRef] [PubMed]
  9. Yu. Shkuratov, S. Bondarenko, V. Kaydash, G. Videen, O. Muñoz, and H. Volten, “Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles,” J. Quant. Spectrosc. Radiat. Transfer 106, 487-508 (2007). [CrossRef]
  10. H. Zhang and K. J. Voss, “Bidirectional reflectance measurements of closely packed natural and prepared particulate surfaces,” in Light Scattering Reviews 3, Springer Praxis Books (Springer, 2008), pp. 279-327. [CrossRef]
  11. M.I.Mishchenko, J.W.Hovenier, and L.D.Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).
  12. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 775-824 (2003). [CrossRef]
  13. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  14. V. P. Tishkovets, “Incoherent and coherent backscattering of light by a layer of densely packed random medium,” J. Quant. Spectrosc. Radiat. Transfer 108, 454-463 (2007). [CrossRef]
  15. K. K. Tse, L. Tsang, C. H. Chan, K. H. Ding, and K. W. Leung, “Multiple scattering of waves by dense random distributions of sticky particles for applications in microwave scattering by terrestrial snow,” Radio Sci. 42, RS5001 (2007). [CrossRef]
  16. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, “Multiple scattering by random particulate media: exact 3D results,” Opt. Express 15, 2822-2836 (2007). [CrossRef] [PubMed]
  17. S. Tseng, “Optical characteristics of a cluster of closely-packed dielectric spheres,” Opt. Commun. 281, 1986-1990 (2008). [CrossRef]
  18. Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  19. Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, “Enhanced backscattering in optics,” Prog. Opt. 29, 65-197 (1991). [CrossRef]
  20. V. L. Kuz'min and V. P. Romanov, “Coherent phenomena in light scattering from disordered systems,” Phys.-Usp. 39, 231-260 (1996). [CrossRef]
  21. C.Mätzler, ed., Thermal Microwave Radiation: Applications for Remote Sensing (IET Press, 2006). [CrossRef]
  22. D. W. Mackowski, “A simplified model to predict the effects of aggregation on the absorption properties of soot particles,” J. Quant. Spectrosc. Radiat. Transfer 100, 237-249 (2006). [CrossRef]
  23. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996). [CrossRef]
  24. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002), http://www.giss.nasa.gov/~crmim/books.html.
  25. J. W. Hovenier, C. van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres--Basic Concepts and Practical Methods (Springer, 2004).
  26. M. I. Mishchenko, “Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach,” Rev. Geophys. 46, RG2003 (2008). [CrossRef]
  27. A. P. Ivanov, A. Ya. Khairullina, and T. N. Kharkova, “Experimental detection of cooperative effects in a scattering volume,” Opt. Spectrosc. 28, 204-207 (1970).
  28. C. C. Porco, J. W. Weiss, D. C. Richardson, L. Dones, T. Quinn, and H. Throop, “Simulations of the dynamical and lighT-scattering behavior of Saturn's rings and the derivation of ring particle and disk properties,” Astron. J. 136, 2172-2200(2008). [CrossRef]
  29. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  30. J. M. Dlugach and M. I. Mishchenko, “Diffuse and coherent backscattering of polarized light: polarization ratios for a discrete random medium composed of nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 21-32(2007). [CrossRef]
  31. E. Zubko, Yu. Shkuratov, M. Hart, J. Eversole, and G. Videen, “Backscattering of agglomerate particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 163-171 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited