OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2444–2449

Resonant-type third-order optical nonlinearity and optical bandgap in multicomponent oxide glasses

Fouad El-Diasty, Manal Abdel-Baki, and Assem M. Bakry  »View Author Affiliations

Applied Optics, Vol. 48, Issue 13, pp. 2444-2449 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical nonlinearity or the nonlinear hyperpolarizability of amorphous materials (e.g., glasses) is related directly to the complex third-order susceptibility. The imaginary part of third-order susceptibility affects negatively the maximum data rate in telecommunication systems. In addition, many transition metals containing glasses have bandgaps with semiconductor-like behavior. So, due to the necessity of operation near the absorption band edge, the study of optical nonlinearity and band structure in glasses is very essential. In this work, we investigated the relationship between the imaginary third-order nonlinear susceptibility and the bandgap of some different series of prepared oxide glasses. A universal empirical formula is given to correlate the imaginary part of the third-order nonlinear susceptibility of the glasses and their optical bandgaps. The obtained nonlinearity is discussed in view of available theories and mechanisms.

© 2009 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: December 18, 2008
Revised Manuscript: January 14, 2009
Manuscript Accepted: February 25, 2009
Published: April 23, 2009

Fouad El-Diasty, Manal Abdel-Baki, and Assem M. Bakry, "Resonant-type third-order optical nonlinearity and optical bandgap in multicomponent oxide glasses," Appl. Opt. 48, 2444-2449 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  2. V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. II,” J. Appl. Phys. 79, 1741-1745(1996). [CrossRef]
  3. H. Ticha´ and L. Tichy´, “Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides,” J. Optoelectron. Adv. Mater. 4, 381-386 (2002).
  4. N. L. Böling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601-608 (1978). [CrossRef]
  5. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999). [CrossRef]
  6. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939-1941 (2001). [CrossRef]
  7. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964). [CrossRef]
  8. D. Hobbs, D. Weaire, S. McMurry, and O. Zuchuat, “The computation of linear and nonlinear optical constants of semiconductors,” J. Phys. Condens. Matter 8, 4691-4708 (1996). [CrossRef]
  9. S. Suehara, T. Konishi, and S. Inoue, “Ab initio calculation of the refractive index and third-order nonlinear optical susceptibility of typical glass formers using the bond additivity model,” Phys. Rev. B 73, 092203 (2006). [CrossRef]
  10. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96-99 (1990). [CrossRef] [PubMed]
  11. M. Sheik-Bahae and E. W. Van Stryland, in: E.Garmire and A.Kost, eds., Semiconductors and Semimetals (Academic, 1999), Vol. 58, Chap. 4.
  12. M. Weiler, “Nonparabolicity and exciton effects in two-photon absorption in zincblende semiconductors,” Solid State Commun. 39, 937-940 (1981). [CrossRef]
  13. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67-72(1984). [CrossRef]
  14. K. Tanaka, “Nonlinear optics in glasses: How can we analyze?,” J. Phys. Chem. Solids 68, 896-900 (2007). [CrossRef]
  15. T. Cassano, R. Tommasi, M. Ferrara, F. Babudri, G. M. Farimol, and F. Naso, “Substituent-dependence of the optical nonlinearities in poly(2,5-dialkoxy-p-phenylenevinylene) polymers investigated by the Z-scan technique,” Chem. Phys. 272, 111-118 (2001). [CrossRef]
  16. E. A. Davis and N. F. Mott, “Conduction in noncrystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22903-922 (1970). [CrossRef]
  17. M. Abdel-Baki, F. A. Abdel Wahab, and F. El-Diasty, “Optical characterization of xTiO2─(60−x)SiO2─40Na2O glasses: I. linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96, 201-210 (2006). [CrossRef]
  18. F. El-Diasty, F. A. Abdel Wahab, and M. Abdel-Baki, “Optical bandgap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006). [CrossRef]
  19. M. Abdel-Baki and F. El-Diasty, “Linear and nonlinear refractive-index properties of silicate glasses doped with BaO: fundamental absorption edge investigation,” Phys. Chem. Glasses 48, 74-78 (2007).
  20. M. Abdel-Baki, F. A. Abdel Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68, 1457-1470 (2007). [CrossRef]
  21. B. Edlén, “The refractive index of air,” Metrologia 2, 71-79 (1966). [CrossRef]
  22. M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000). [CrossRef]
  23. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32231-254 (1991).
  24. M. Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. Appl. Phys. 69, 6876-6884 (1991). [CrossRef]
  25. C. Chen and G. Z. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Annu. Rev. Mater. Sci. 16, 203-243 (1986). [CrossRef]
  26. H. Kimura and A. Miyazaki, “Composition dependence of third-order nonlinear optical properties on BaO─B2O3─Al2O3 and BaO─B2O3─Ga2O3 glasses,” Mater. Res. Bull. 36, 1847-1853 (2001). [CrossRef]
  27. J. R. Tessman and A. H. Kahn, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890-895 (1953). [CrossRef]
  28. M. Abdel-Baki, F. El-Diasty, and F. A. Abdel Wahab, Opt. “Optical characterization of xTiO2─(60−x)SiO2─40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261, 65-70 (2006). [CrossRef]
  29. A. Abou Shama, M. S. Abd El Keriem, M. Abdel-Baki, and F. El-Diasty, “RDF analysis, Positron annihilation and Raman spectroscopy of xTiO2─(60−x)SiO2─40Na2O nonlinear optical glasses: III. Non-bridging oxygen bonds tracing and structure analysis,” J. Non-Cryst. Solids 353, 2708-2716 (2007). [CrossRef]
  30. H. Nasu, O. Sugimoto, J. Matsuoka, and K. Kamiya, “Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses-contribution of individual chemical species in the glasses to χ(3),” J. Non-Cryst. Solids 182, 321-327 (1995). [CrossRef]
  31. Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Quin, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited