OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2496–2504

Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution

Fenghua Tian, George Alexandrakis, and Hanli Liu  »View Author Affiliations


Applied Optics, Vol. 48, Issue 13, pp. 2496-2504 (2009)
http://dx.doi.org/10.1364/AO.48.002496


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optode geometry plays an important role in achieving both good spatial resolution and spatial uniformity of detection in diffuse-optical-imaging-based brain activation studies. The quality of reconstructed images for six optode geometries were studied and compared using a laboratory tissue phantom model that contained an embedded object at two separate locations. The number of overlapping measurements per pixel (i.e., the measurement density) and their spatial distributions were quantified for all six geometries and were correlated with the quality of the resulting reconstructed images. The latter were expressed by the area ratio (AR) and contrast-to-noise ratio (CNR) between reconstructed and actual objects. Our results revealed clearly that AR and CNR depended on the measurement density asymptotically, having an optimal point for measurement density beyond which more overlapping measurements would not significantly improve the quality of reconstructed images. Optimization of probe geometry based on our method demonstrated that a practical compromise can be attained between DOI spatial resolution and measurement density.

© 2009 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 12, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: April 6, 2009
Published: April 27, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Fenghua Tian, George Alexandrakis, and Hanli Liu, "Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution," Appl. Opt. 48, 2496-2504 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-13-2496

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited