OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2515–2521

Compensation of frequency modulation to amplitude modulation conversion in frequency conversion systems

Steve Hocquet, Geoffrey Lacroix, and Denis Penninckx  »View Author Affiliations


Applied Optics, Vol. 48, Issue 13, pp. 2515-2521 (2009)
http://dx.doi.org/10.1364/AO.48.002515


View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency modulation to amplitude modulation (FM-to-AM) conversion is an important issue that can prevent fusion ignition with high power lasers such as the Laser MegaJoule (LMJ). On LMJ, most of the FM-to-AM conversion is expected in the so-called frequency conversion and focusing system, which is a nonlinear system. However, we propose linear transfer functions to compensate the effect of frequency conversion on FM-to-AM conversion. We show that most of AM distortion can be reduced by practical systems: for beam intensity up to 3 GW / cm 2 , the FM-to-AM conversion level can be divided by at least 2, and we almost cancel intensity modulation for intensities below 1 GW / cm 2 .

© 2009 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(190.2620) Nonlinear optics : Harmonic generation and mixing
(070.2615) Fourier optics and signal processing : Frequency filtering
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 29, 2009
Revised Manuscript: April 6, 2009
Manuscript Accepted: April 13, 2009
Published: April 27, 2009

Citation
Steve Hocquet, Geoffrey Lacroix, and Denis Penninckx, "Compensation of frequency modulation to amplitude modulation conversion in frequency conversion systems," Appl. Opt. 48, 2515-2521 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-13-2515


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. www-lmj.cea.fr and www.llnl.gov/nif/project.
  2. J. R. Murray, J. Ray Smith, R. B. Ehrlich, D. T. Karazys, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402-2411 (1989). [CrossRef]
  3. J. Garnier, L. Videau, C. Gouédard, and A. Migus, “Statistical analysis for beam smoothing and some applications ,” J. Opt. Soc. Am. A 14, 1928-1937 (1997).
  4. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51-61 (1999). [CrossRef]
  5. J. D. Lindl, P. Amedt, R. H. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Hann, R. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on National Ignition Facility,” Phys. Plasmas 11, 339-491(2004). [CrossRef]
  6. D. Penninckx, N. Beck, J.-F. Gleyze, and L. Videau, “Signal propagation over polarization-maintaining fibers: problem and solutions,” J. Lightwave Technol. 24, 4197-4207 (2006). [CrossRef]
  7. S. Hocquet, D. Penninckx, É. Bordenave, C. Gouédard, and Y. Jaouën, “FM-to-AM conversion in high power lasers,” Appl. Opt. 47, 3338-3349 (2008). [CrossRef] [PubMed]
  8. O. Morice, “Miró: Complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42, 1530-1541 (2003). [CrossRef]
  9. J. R. Carson, “Notes on the theory of modulation,” Proc. IRE 10, 57-64 (1922). [CrossRef]
  10. A. Boscheron, “Etude de nouvelles configurations de conversion de fréquence pour l'optimisation des lasers de haute puissance,” Ph.D. dissertation (Université Paris XI, 1996).
  11. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys 66, 3456-3462 (1989). [CrossRef]
  12. V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strishevkii, “Method for compensating the phase-matching dispersion in nonlinear optics,” Sov. J. Quantum Electron. 4, 1090-1098 (1975). [CrossRef]
  13. J. Néauport, N. Blanchot, C. Rouyer, and C. Sauteret, “Chromatism compensation of the PETAL multipetawatt high energy laser,” Appl. Opt. 46, 1568-1574(2007). [CrossRef] [PubMed]
  14. L. J. Waxer, J. H. Kelly, J. Rothenberg, A. Babushkin, C. Bibeau, A. Bayramian, and S. Payne, “Precision spectral sculpting for narrow-band amplification of broadband frequency-modulated pulses,” Opt. Lett. 27, 1427-1429(2002). [CrossRef]
  15. “Multiple-FM smoothing by spectral dispersion--an augmented laser speckle smoothing scheme,” Lab. Laser Energetics Rev. 114, 73-80 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited