OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 13 — May. 1, 2009
  • pp: 2600–2606

Pump-enhanced difference-frequency generation at 3.3 μm

Mark F. Witinski, Joshua B. Paul, and James G. Anderson  »View Author Affiliations

Applied Optics, Vol. 48, Issue 13, pp. 2600-2606 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The demonstration of continuous wave intracavity difference-frequency generation in the mid-infrared (mid-IR) is presented. A cavity for pump laser enhancement is constructed around a periodically poled lithium niobate crystal, and the cavity length is locked to the frequency of the pump laser using the Pound–Drever–Hall technique, producing a gain of 12 in the resultant idler power compared to the single-pass case. A widely tunable single-mode 3.3 μm idler beam with a power of nearly 10 mW is available for direct absorption spectroscopy. The pump-enhancement method demonstrated here should be readily scalable to produce hundreds of milliwatts of mid-IR light by using higher power signal and pump lasers.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(140.3410) Lasers and laser optics : Laser resonators
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Nonlinear Optics

Original Manuscript: February 3, 2009
Revised Manuscript: April 6, 2009
Manuscript Accepted: April 13, 2009
Published: April 30, 2009

Mark F. Witinski, Joshua B. Paul, and James G. Anderson, "Pump-enhanced difference-frequency generation at 3.3 μm," Appl. Opt. 48, 2600-2606 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997). [CrossRef]
  2. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998). [CrossRef]
  3. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142-1144 (1999). [CrossRef]
  4. A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007). [CrossRef]
  5. G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, “Extended mode-hop-free tuning by use of a dual-cavity pump-enhanced optical parametric oscillator,” Opt. Lett. 25, 341-343 (2000). [CrossRef]
  6. A. J. Henderson, P. M. Roper, L. A. Borschowa, and R. D. Mead, “Stable, continuously tunable operation of a diode-pumped doubly resonant optical parametric oscillator,” Opt. Lett. 25, 1264-1266 (2000). [CrossRef]
  7. F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).
  8. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002). [CrossRef]
  9. D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B 82, 479-486 (2006). [CrossRef]
  10. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm,” Opt. Express 14, 1304-1313 (2006). [CrossRef] [PubMed]
  11. C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006). [CrossRef]
  12. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202-8210 (2007). [CrossRef] [PubMed]
  13. D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007). [CrossRef] [PubMed]
  14. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995). [CrossRef]
  15. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001). [CrossRef]
  16. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001). [CrossRef]
  17. A. E. Siegman, “Laser mirrors and regenerative feedback,” in Lasers (University Science Books, 1986), pp. 416-420.
  18. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591-593 (1996). [CrossRef] [PubMed]
  19. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited