OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2613–2618

Nanoengineered optical resonance sensor for composite material refractive-index measurements

Anna L. Pyayt, David A. Fattal, Zhiyong Li, and Raymond G. Beausoleil  »View Author Affiliations

Applied Optics, Vol. 48, Issue 14, pp. 2613-2618 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an optical resonance sensor capable of measurement of refractive index in highly nonhomogeneous materials. Traditional optical resonance sensors fail when the size of particles is comparable with the wavelength ( 100 nm and larger). Our new nanoengineered design allows incorporation of a highly delocalized mode into a resonance structure. The sensing depth of the device was measured to be 1 μm , the largest reported in the literature as far as we know, with a quality factor of 500. We demonstrate two applications.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Diffraction and Gratings

Original Manuscript: February 4, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 3, 2009
Published: May 1, 2009

Anna L. Pyayt, David A. Fattal, Zhiyong Li, and Raymond G. Beausoleil, "Nanoengineered optical resonance sensor for composite material refractive-index measurements," Appl. Opt. 48, 2613-2618 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006). [CrossRef]
  2. A. J. Thote and R. B. Gupta, “Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release,” Nanomed. 1, 85-90 (2005). [CrossRef]
  3. L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008). [CrossRef]
  4. A. Buchman and R. G. Bryant, “Molded carbon-carbon composites based on microcomposite technology,” Appl. Compos. Mater. 6(5), 309-326 (1999). [CrossRef]
  5. M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008). [CrossRef]
  6. F. Wypych and K. Satyanarayana, “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties,” J. Colloid Interface Sci, 285, 532-543 (2005). [CrossRef]
  7. F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007). [CrossRef]
  8. W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).
  9. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999). [CrossRef]
  10. I. M. White, N. M. Hanumegowda, and X. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005). [CrossRef] [PubMed]
  11. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  12. V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007). [CrossRef]
  13. V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003). [CrossRef] [PubMed]
  14. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007). [CrossRef]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  16. R. Magnusson, and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  17. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613(1993). [CrossRef] [PubMed]
  18. L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16, 17962-17971 (2008). [CrossRef] [PubMed]
  19. C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004). [CrossRef]
  20. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42, 3225-3233 (2003). [CrossRef] [PubMed]
  21. H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005). [CrossRef]
  22. D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited