OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2642–2648

Holographic recording in acrylamide photopolymers: thickness limitations

Mohammad Sultan Mahmud, Izabela Naydenova, Nitesh Pandey, Tzwetanka Babeva, Raghavendra Jallapuram, Suzanne Martin, and Vincent Toal  »View Author Affiliations


Applied Optics, Vol. 48, Issue 14, pp. 2642-2648 (2009)
http://dx.doi.org/10.1364/AO.48.002642


View Full Text Article

Enhanced HTML    Acrobat PDF (1002 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic recording in thick photopolymer layers is important for application in holographic data storage, volume holographic filters, and correlators. Here, we studied the characteristics of acrylamide-based photopolymer layers ranging in thickness from 250 μm to 1 mm . For each thickness, samples with three different values of absorbance were studied. By measuring the diffraction efficiency growth of holographically recorded gratings and studying the diffraction patterns obtained, the influence of scattering on the diffraction efficiency of thick volume holographic gratings was analyzed. It was found that, above a particular thickness and absorbance, the diffraction efficiency significantly decreased because of increased holographic scattering. From the diffraction efficiency dependence on absorbance and thickness it is possible to choose photopolymer layer properties that are suitable for a particular holographic application. This study was carried out to determine the highest layer thickness that could be used for phase code multiplexed holographic data storage utilizing thick photopolymer layers as a recording medium. Based on our studies to date we believe that the layer to be used for phase coded reference beam recording with 0.1 absorbance at 532 nm can have a thickness up to 450 μm . The potential use of thicker layers characterized by low scattering losses is part of our continuing research.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.2900) Holography : Optical storage materials

ToC Category:
Holography

History
Original Manuscript: January 2, 2009
Revised Manuscript: April 8, 2009
Manuscript Accepted: April 16, 2009
Published: May 4, 2009

Citation
Mohammad Sultan Mahmud, Izabela Naydenova, Nitesh Pandey, Tzwetanka Babeva, Raghavendra Jallapuram, Suzanne Martin, and Vincent Toal, "Holographic recording in acrylamide photopolymers: thickness limitations," Appl. Opt. 48, 2642-2648 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-14-2642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969). [CrossRef]
  2. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636-1641 (1971). [CrossRef] [PubMed]
  3. J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964-1970 (1973). [CrossRef] [PubMed]
  4. W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990). [CrossRef]
  5. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757-5768 (1997). [CrossRef] [PubMed]
  6. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006). [CrossRef]
  7. D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).
  8. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998). [CrossRef]
  9. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001). [CrossRef]
  10. A.Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003). [CrossRef] [PubMed]
  11. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353-2358 (2000). [CrossRef]
  12. C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997). [CrossRef]
  13. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001). [CrossRef]
  14. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds, Holographic Data Storage (Springer-Verlag, 2000).
  15. A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996). [CrossRef] [PubMed]
  16. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993). [CrossRef]
  17. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000). [CrossRef]
  18. H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3774 (1994). [CrossRef] [PubMed]
  19. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003). [CrossRef]
  20. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003). [CrossRef] [PubMed]
  21. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939-1950 (2005). [CrossRef] [PubMed]
  22. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer. materials,” J. Mod. Opt. 41, 1929-1934 (1994). [CrossRef]
  23. S. Piazzolla and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000). [CrossRef]
  24. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004). [CrossRef] [PubMed]
  25. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008). [CrossRef] [PubMed]
  26. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427-3435 (2002). [CrossRef] [PubMed]
  27. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997). [CrossRef]
  28. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998). [CrossRef]
  29. X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).
  30. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809-6814 (2007). [CrossRef] [PubMed]
  31. M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004). [CrossRef]
  32. M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005). [CrossRef]
  33. M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).
  34. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  35. M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974). [CrossRef] [PubMed]
  36. M. R. B. Forshaw, “Explanation of the Venetial blind effect in holography using the Ewald sphere concept,” Opt. Commun. 8, 201-206 (1973). [CrossRef]
  37. R. Magnusson and T. K. Gaylord, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545-1548(1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited