OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2669–2677

Design and fabrication of polarization-holographic elements for laser beam shaping

Markus Fratz, Stefan Sinzinger, and Dominik Giel  »View Author Affiliations

Applied Optics, Vol. 48, Issue 14, pp. 2669-2677 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an experimental realization of polarization-holographic optical elements (PHOEs) for laser beam shaping. The PHOEs were written into an azobenzene polymer layer by illumination with linearly polarized, focused light with spatially varying orientation. We propose a noniterative design method for the calculation of PHOEs that transform laser beams into arbitrary rotationally symmetric or separable intensity distributions such as flattop or ring profiles. The experimentally observed intensity distributions are compared with those predicted by numerical simulations based on the Fresnel diffraction approximation. Diffraction efficiencies up to 79% were determined experimentally.

© 2009 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1760) Holography : Computer holography
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:

Original Manuscript: December 22, 2008
Revised Manuscript: March 30, 2009
Manuscript Accepted: April 21, 2009
Published: May 5, 2009

Markus Fratz, Stefan Sinzinger, and Dominik Giel, "Design and fabrication of polarization-holographic elements for laser beam shaping," Appl. Opt. 48, 2669-2677 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Caley, M. J. Thomson, J. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15, 10699-10704 (2007). [CrossRef] [PubMed]
  2. H. Aagedal, M. Schmid, S. Egner, J. Müller-Quade, T. Beth, and F. Wyrowski, “Analytical beam shaping with application to laser-diode array,” J. Opt. Soc. Am. A 14, 1549-1553 (1997). [CrossRef]
  3. M. Fratz, D. Eberhard, W. J. Riedel, and D. Giel, “Direct laser-writing of diffractive optical elements in photopolymer layers,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2008), paper DWB7.
  4. M. Fratz, D. M. Giel, and P. Fischer, “Digital polarization holograms with defined magnitude and orientation of each pixel's birefringence,” Opt. Lett. 34, 1270-1272 (2009). [CrossRef] [PubMed]
  5. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785-786 (2000). [CrossRef]
  6. L. Nikolova, and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579-588 (1984). [CrossRef]
  7. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328-330(2003). [CrossRef]
  8. S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A 44, 247-262(1956).
  9. T. Kreis, Handbook of Holographic Interferometry (Wiley, 2004). [CrossRef]
  10. R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for two-plane computer-generated hologram display,” Appl. Opt. 33, 869-875 (1994). [CrossRef] [PubMed]
  11. R. Wu, F. Shu, W. Zhang, X. Zhang, and Y. Li, “Extended algorithm for the design of diffractive optical elements around the focal plane,” Appl. Opt. 46, 5779-5783 (2007). [CrossRef] [PubMed]
  12. R. El-Agmy, H. Bulte, A. H. Greenaway, and D. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085-6091 (2005). [CrossRef] [PubMed]
  13. O. Bryngdahl, “Optical map transformations,” Opt. Commun. 10, 164-168 (1974). [CrossRef]
  14. W. Singer, M. Trotzeck, and H. Gross, Handbook of Optical Systems. Volume 2: Physical Image Formation (Wiley, 2005).
  15. I. Mancheva, E. Nacheva, T. Petrova, N. Tomova, V. Dragostinova, T. Todorov, and L. Nikolova, “Light-controlled polarization switches in azobenzene-containing polymers,” Proc. SPIE 5226, 199-203 (2003). [CrossRef]
  16. D. Rais, Y. Zakrevsky, J. Stumpe, S. Nešpůrek, and Z. Sedláková, “Photoorientation of azobenzene side groups in a liquid-crystalline polybutadiene-based polymer,” Opt. Mater. 30, 1335-1342 (2008). [CrossRef]
  17. Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys. 40, 1613-1618 (2001). [CrossRef]
  18. P. Várhegyi, A. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003). [CrossRef]
  19. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380-394 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited