OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2720–2730

High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light

Mariela Rodriguez-Otazo, Angel Augier-Calderin, Jean-Pierre Galaup, Jean-François Lamère, and Suzanne Fery-Forgues  »View Author Affiliations


Applied Optics, Vol. 48, Issue 14, pp. 2720-2730 (2009)
http://dx.doi.org/10.1364/AO.48.002720


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We build an experiment of optical tweezers based on the use of an inverted optical microscope for manipulating microsized single crystals, which are made of an organic dye and parallelepiped in shape. The microcrystals are directed so that their long axis is in the axial direction of the trapping beam. Their short axis follows the direction of the linear polarization of the beam. In circular or elliptic polarization, the crystals are spontaneously put in rotation with a high speed of up to 500 turns per second. It is the first time, to the best of our knowledge, that such a result is reported for particles of the size of our crystals. Another surprising result is that the rotation speed was first increased as expected by increasing the incident power, but after passing by a maximum it decreased until the complete stop of rotation, whereas the power continued growing. This evolution was not reversible. Several hypotheses are discussed to explain such behavior.

© 2009 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Tweezing

History
Original Manuscript: February 18, 2009
Revised Manuscript: April 10, 2009
Manuscript Accepted: April 14, 2009
Published: May 6, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Mariela Rodriguez-Otazo, Angel Augier-Calderin, Jean-Pierre Galaup, Jean-François Lamère, and Suzanne Fery-Forgues, "High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light," Appl. Opt. 48, 2720-2730 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-14-2720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, “History of optical trapping and manipulation of small neutral particles, atoms and molecules,” in Single Molecule Spectroscopy, R. Rigler, M. Orrit, and T. Basché, eds. (Springer, 2001), pp. 1-31. [CrossRef]
  3. M. J. Lang and S. M. Block, “Ressource letter: LBOT-1: laser based optical tweezers,” Am. J. Phys. 71, 201-215 (2003). [CrossRef]
  4. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653-4656 (2002). [CrossRef]
  5. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  6. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996). [CrossRef]
  7. K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994). [CrossRef]
  8. P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Colloid Interface Sci. 221, 301-307 (2000). [CrossRef] [PubMed]
  9. M. Rodriguez-Otazo, A. Augier-Calderin, and J.-P. Galaup, “Nanometer gold-silica composite particles manipulated by optical tweezers,” Opt. Commun. (in press).
  10. Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885-3892 (2006). [CrossRef] [PubMed]
  11. Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005). [CrossRef]
  12. D. Ganic, X. Gan, and M. Gu, “Exact radiation trapping force calculation based on vectorial diffraction theory,” Opt. Express 12, 2670-2675 (2004). [CrossRef] [PubMed]
  13. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003). [CrossRef]
  14. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) . [CrossRef]
  15. R. C. Gauthier, M. Ashman, and C. P. Grower, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861-4869 (1999). [CrossRef]
  16. Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002). [CrossRef] [PubMed]
  17. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446-451 (2003). [CrossRef] [PubMed]
  18. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006). [CrossRef]
  19. C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005). [CrossRef]
  20. W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12, 941-950 (2001).
  21. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998). [CrossRef]
  22. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998). [CrossRef]
  23. A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002). [CrossRef]
  24. A. La Porta and M. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004). [CrossRef] [PubMed]
  25. X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008). [CrossRef]
  26. H. Nakanishi and H. Oikawa, “Reprecipitation method for organic nanocrystals, in Single Organic Nanoparticles, H. Masuhara, H. Nakanishi, and K. Sasaki, eds. (Springer Verlag, 2003), pp. 17-31. [CrossRef]
  27. F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003). [CrossRef] [PubMed]
  28. F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006). [CrossRef] [PubMed]
  29. M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005). [CrossRef] [PubMed]
  30. L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006). [CrossRef] [PubMed]
  31. M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009). [CrossRef] [PubMed]
  32. M. Rodriguez-Otazo, “Réalisation de pinces optiques pour la manipulation de nano et micro objets individuels d'intérêt chimique ou biologique,” Ph.D. dissertation (Université de Paris, 2008).
  33. F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001). [CrossRef]
  34. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323-3333 (1997). [CrossRef]
  35. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999). [CrossRef]
  36. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998). [CrossRef]
  37. M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).
  38. R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855-11869 (2006). [CrossRef] [PubMed]
  39. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375-5401(2004). [CrossRef] [PubMed]
  40. M. Mansuripur, “Angular momentum of circularly polarized light in dielectric media,” Opt. Express 13, 5315-5324(2005). [CrossRef] [PubMed]
  41. K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl. Opt. 47, 6428-6433 (2008). [CrossRef] [PubMed]
  42. A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).
  43. M. E. J. Friese, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996). [CrossRef]
  44. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997). [CrossRef]
  45. P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B 4, S78-S81 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited