OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 14 — May. 10, 2009
  • pp: 2742–2751

Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme

Ina Mattis, Matthias Tesche, Matthias Grein, Volker Freudenthaler, and Detlef Müller  »View Author Affiliations

Applied Optics, Vol. 48, Issue 14, pp. 2742-2751 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Signals of many types of aerosol lidars can be affected with a significant systematic error, if depolarizing scatterers are present in the atmosphere. That error is caused by a polarization-dependent receiver transmission. In this contribution we present an estimation of the magnitude of this systematic error. We show that lidar signals can be biased by more than 20%, if linearly polarized laser light is emitted, if both polarization components of the backscattered light are measured with a single detection channel, and if the receiver transmissions for these two polarization components differ by more than 50%. This signal bias increases with increasing ratio between the two transmission values (transmission ratio) or with the volume depolarization ratio of the scatterers. The resulting error of the particle backscatter coefficient increases with decreasing backscatter ratio. If the particle backscatter coefficients are to have an accuracy better than 5%, the transmission ratio has to be in the range between 0.85 and 1.15. We present a method to correct the measured signals for this bias. We demonstrate an experimental method for the determination of the transmission ratio. We use collocated measurements of a lidar system strongly affected by this signal bias and an unbiased reference system to verify the applicability of the correction scheme. The errors in the case of no correction are illustrated with example measurements of fresh Saharan dust.

© 2009 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 5, 2009
Manuscript Accepted: February 25, 2009
Published: May 7, 2009

Ina Mattis, Matthias Tesche, Matthias Grein, Volker Freudenthaler, and Detlef Müller, "Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme," Appl. Opt. 48, 2742-2751 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bösenberg, V. Matthias, H. Linné, C. Böckmann, I. Mironova, L. Schneidenbach, A. Kirsche, A. Mekler, M. Wiegner, V. Freudenthaler, I. Stachlewska, W. Kumpf, G. Pappalardo, A. Amodeo, L. Mona, M. Pandolfi, D. Balis, V. Amoiridis, C. Zerefos, A. Ansmann, I. Mattis, U. Wandinger, D. Müller, N. Spinelli, X. Wang, A. Boselli, A. Chaikovsky, A. Comeron, F. Rocadenbosch, C. Pérez, J. Baldasano, J. Pelon, L. Sauvage, R. M. Perrone, F. de Tomasi, R. Eixmann, V. Mitev, R. Matthey, A. Hagard, R. Persson, G. Carlsson, V. Rizi, M. Iarlori, G. Vaughan, T. Trickl, S. Kreipl, H. Giehl, V. Simeonov, D. P. Resendes, J. A. Rodrigues, P. Sobolewski, S. Nickovic, S. Music, M. Zavrtanik, D. Stoyanov, I. Grigorov, G. Kolarov, and A. Papayannis, “EARLINET: A European Aerosol Research Lidar Network to establish an aerosol climatology,” Tech. Rep. 348 (Max-Planck-Institut für Meteorologie, 2003).
  2. G. Pappalardo, J. Bösenberg, A. Amodeo, A. Ansmann, A. Apituley, D. Balis, C. Böckmann, A. Chaikovsky, A. Comeron, V. Freudenthaler, G. Hansen, V. Mitev, A. Papayannis, M. Perrone, A. Pietruczuk, M. Pujadas, F. Ravetta, V. Rizi, V. Simeonov, N. Spinelli, D. Stoyanov, T. Trickl, and M. Wiegner, “EARLINET-ASOS: European Aerosol Research Lidar Network--Advanced Sustainable Observation System,” in 7th International Symposium on Tropospheric Profiling: Needs and Technologies--Extended Abstracts (American Meteorological Society, 2006), pp. 5.3-5.4.
  3. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in east Asia,” J. Geophys. Res. 106, 18345-18359 (2001). [CrossRef]
  4. T. Nakajima, S.-C. Yoon, V. Ramanathan, G.-Y. Shi, T. Takemura, A. Higurashi, T. Takamura, K. Aoki, B.-J. Sohn, S.-W. Kim, H. Tsuruta, N. Sugimoto, A. Shimizu, H. Tanimoto, Y. Sawa, N.-H. Lin, C.-T. Lee, D. Goto, and N. Schutgens, “Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia,” J. Geophys. Res. 122, D24S91 (2007). [CrossRef]
  5. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358 (2008). [CrossRef] [PubMed]
  6. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Isquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752 (2008). [CrossRef] [PubMed]
  7. D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34, L19803 (2007). [CrossRef]
  8. J. Biele, G. Beyerle, and G. Baumgarten, “Polarization lidar: Corrections of instrumental effects,” Opt. Express 7, 427-435 (2000). [CrossRef] [PubMed]
  9. J. Reichardt, R. Baumgart, and T. J. McGee, “Three-signal method for accurate measurements of depolarization ratio with lidar,” Appl. Opt. 42, 4909-4913 (2003). [CrossRef] [PubMed]
  10. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” 23, 683-699 (2006). [CrossRef]
  11. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus 61B, 165-179 (2008).
  12. I. Mattis, “Errors in backscatter profiles caused by a depolarization-dependent receiver transmission,” in Lidar Remote Sensing in Atmosphere and Earth Sciences. Reviewed and Revised Papers Presented at the Twenty-First International Laser Radar Conference (ILRC21), L. R. Bissonnette, G. Roy, and G. Vallee, eds. (Defence R & D Canada Valcartier, 2002), pp. 121-124.
  13. M. Tesche, A. Ansmann, D. Müller, D. Althausen, I. Mattis, B. Heese, V. Freudenthaler, M. Wiegner, M. Esselborn, G. Pisani, and P. Knippertz, “Vertical profiling of Saharan dust with Raman lidars and airbone HSRL in southern Morocco during SAMUM,” Tellus 61B, 144-164 (2009).
  14. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469-1482 (2000). [CrossRef]
  15. M. Wiegner, H. Quenzel, D. Rabus, W. Völker, P. Völger, L. Ackermann, C. Kähler, F. Fergg, and G. Wildgruber, “The mobile three-wavelength backscatter lidar of the Meteorological Institute of the University Munich,” Proc. SPIE 2505, 2-10 (1995). [CrossRef]
  16. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitcamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113-7131 (1992). [CrossRef] [PubMed]
  17. J. D. Klett, “Stable analytic inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  18. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985). [CrossRef] [PubMed]
  19. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  20. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscatter ratio in the lidar solution,” Appl. Opt. 24, 3929-3932 (1985). [CrossRef] [PubMed]
  21. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511-514 (2002). [CrossRef] [PubMed]
  22. P. Russell, J. Swissier, , and P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979). [PubMed]
  23. A. Behrendt and T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10, 805-817 (2002). [PubMed]
  24. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L24103 (2004). [CrossRef]
  25. D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a Central European EARLINET-AERONET site: combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003). [CrossRef]
  26. K. Sassen, “Polarization in Lidar,” in “Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,” C. Weitkamp, ed. (Springer, 2005), pp. 19-42.
  27. M. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309-312 (1998). [CrossRef]
  28. U. Wandinger, A. Ansmann, and C. Weitcamp, “Atmospheric Raman depolarization-ratio measurements,” Appl. Opt. 33, 5671-5673 (1994). [CrossRef] [PubMed]
  29. A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, P. Knippertz, and O. Dubovik, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008). [CrossRef]
  30. B. Heese, V. Freudenthaler, M. Seefeldner, and M. Wiegner, “POLIS: A new portable system for ground-based and airborne measurements of aerosols and clouds,” in Lidar Remote Sensing in Atmospheric and Earth Sciences L. Bissonnette, G. Roy, and G. Vallee, eds. (Defence Research and Development Canada Valcartier, 2002), pp. 71-74.
  31. I. Mattis, “Aufbau eines Feuchte-Temperatur-Aerosol-Ramanlidars und Methodenentwicklung zur kombinierten Analyse von Trajektorien und Aerosolprofilen (Construction of a humidity temperature aerosol Raman lidar and development of a method for a combined analysis of trajectories and aerosol profiles),” Ph.D. dissertation (Universität Leipzig, 2002).
  32. I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, “Relative humidity profiling in the troposphere with a Raman lidar,” Appl. Opt. 41, 6451-6462 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited