OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2842–2846

Synthesis and optical spectroscopic studies of semiconducting cadmium sulfide nanowires

Narayanan Kuthirummal, Jason Reppert, Brian Dihel, and Apparao M. Rao  »View Author Affiliations


Applied Optics, Vol. 48, Issue 15, pp. 2842-2846 (2009)
http://dx.doi.org/10.1364/AO.48.002842


View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical properties of cadmium sulfide nanowires of 50 100 nm diameter prepared by the pulsed-laser vaporization method have been studied using photoacoustic, UV-Vis, Raman, and photoluminescence spectroscopy. The photoacoustic (PA) technique yielded clean spectra with a steeper absorption edge for as-prepared opaque semiconducting CdS nanowires when compared to the corresponding con ventional optical absorption spectra. The PA signal intensity was also significantly higher for nanowires. The Raman spectrum revealed increased exciton–longitudinal-optical-phonon coupling. The appearance of a narrow photoluminescence peak at 491 nm (FWHM 9 nm ) and the absence of emission above 500 nm demonstrate the high quality of nanowires. High-resolution transmission electron microscopy showed excellent ordering of the atoms in the [ 001 ] planes perpendicular to the growth direction.

© 2009 Optical Society of America

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: February 9, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 20, 2009
Published: May 11, 2009

Citation
Narayanan Kuthirummal, Jason Reppert, Brian Dihel, and Apparao M. Rao, "Synthesis and optical spectroscopic studies of semiconducting cadmium sulfide nanowires," Appl. Opt. 48, 2842-2846 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-15-2842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997). [CrossRef]
  2. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004). [CrossRef]
  3. Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001). [CrossRef] [PubMed]
  4. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001). [CrossRef] [PubMed]
  5. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006). [CrossRef]
  6. C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003). [CrossRef]
  7. Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002). [CrossRef]
  8. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005). [CrossRef] [PubMed]
  9. H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006). [CrossRef] [PubMed]
  10. C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003). [CrossRef] [PubMed]
  11. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002). [CrossRef]
  12. J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007). [CrossRef]
  13. P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005). [CrossRef] [PubMed]
  14. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).
  15. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381-431 (1986). [CrossRef]
  16. N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008). [CrossRef]
  17. H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007). [CrossRef]
  18. A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28, 23-30 (1975). [CrossRef]
  19. T. Toyoda and Q. Shen, “Effect of size confinement on photoacoustic spectra and photothermal response of CdSxSe1−x(0<×<1)) nanocrystals in a glass matrix,” Anal. Sci. 17, s259-s261 (2001). [CrossRef]
  20. P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998). [CrossRef]
  21. H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007). [CrossRef]
  22. M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995). [CrossRef]
  23. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993). [CrossRef]
  24. K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007). [CrossRef]
  25. W. Z. Shen, “Study of exciton-longitudinal optical phonon coupling in quantum wells for optoelectronic applications,” Appl. Phys. Lett. 79, 1285-1287 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited