OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2903–2914

Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude, and phase diffraction gratings

Antonio Martínez-García, Ignacio Moreno, María M. Sánchez-López, and Pascuala García-Martínez  »View Author Affiliations

Applied Optics, Vol. 48, Issue 15, pp. 2903-2914 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the performance of a ferroelectric liquid crystal on silicon display (FLCoS) as a binary polarization diffraction grating. We analyze the correspondence between the two polarization states emerging from the displayed grating and the polarization and intensity of the diffracted orders generated at the Fourier diffraction plane. This polarization-diffraction analysis leads, in a simple manner, to configurations yielding binary amplitude or binary phase modulation by incorporating an analyzer on the reflected beam. Based on this analysis, we present two useful variations of the polarization configuration. The first is a simplification using a single polarizer, which provides equivalent results for amplitude or phase modulation as the more general operational mode involving two polarizers. The second variation is proposed to compensate the reduction of the diffraction efficiency when the operating wavelength differs from the design one (for which the FLCoS liquid-crystal layer acts as a half-wave plate). In this situation we show how the ideal grating performance can be recovered in spite of the phase-shift mismatch originated by chromatic dispersion. In all cases, we provide experimental results that verify the theoretical analyses.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: February 18, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 28, 2009
Published: May 15, 2009

Antonio Martínez-García, Ignacio Moreno, María M. Sánchez-López, and Pascuala García-Martínez, "Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude, and phase diffraction gratings," Appl. Opt. 48, 2903-2914 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Bougrenet de la Tocnaye and L. Dupont, “Complex amplitude modulation by use of a liquid crystal spatial light modulators,” Appl. Opt. 36, 1730-1741 (1997). [CrossRef] [PubMed]
  2. W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).
  3. J. Gourlay, S. Samus, P. McOwan, D. G. Vass, I. Underwood, and M. Worboys, “Real-time binary phase holograms on a reflective ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 8251-8254 (1994). [CrossRef] [PubMed]
  4. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for optical switches,” IEEE Photon. Technol. Lett. 14, 801-803 (2002). [CrossRef]
  5. M. Johansson, S. Hard, B. Robertson, L. Manolis, T. Wilkinson, and W. Crossland, “Adaptive beam steering implemented in a ferroelectric liquid-crystal spatial-light-modulator free-space, fiber-optic switch,” Appl. Opt. 41, 4904-4911 (2002). [CrossRef] [PubMed]
  6. P. Pellat-Finet, and M. Le Doucen, “Polarization properties of birefringence gratings,” Optik (Jena) 100, 159-166 (1995).
  7. S. T. Warr and R. J. Mears, “Polarisation insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31, 714-716 (1995). [CrossRef]
  8. M. Le Doucen and P. Pellat-Finet, “Polarization properties and diffraction efficiencies of binary anisotropic gratings: general study and experiments on ferroelectric liquid crystals,” Opt. Commun. 151, 321-330 (1998). [CrossRef]
  9. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 2053-2059 (2003). [CrossRef] [PubMed]
  10. K. Heggarty, B. Fracasso, C. Letort, J. L. de Bougrenet de la Tocnaye, M. Brich, and D. Krüerke, “Silicon blackplane ferroelectric liquid crystal spatial light modulator for uses within an optical telecommunications environment,” Ferroelectrics 312, 39-55 (2004). [CrossRef]
  11. A. Martínez-García, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jap. J. Appl. Phys. 47, 1589-1594 (2008). [CrossRef]
  12. A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Characterization and optimization of the constrast-ratio of a ferrroelectric liquid crystal optical modulator,” J. Opt. A: Pure Appl. Opt. 8, 1013-1018 (2006). [CrossRef]
  13. M. M. Sánchez-López, P. García-Martínez, A. Martínez-García, and I. Moreno, “Poincaré sphere analysis of a ferroelectric liquid crystal optical modulator: application to optimize the contrast ratio,” J. Opt. A: Pure Appl. Opt. 11, 015507 (2009). [CrossRef]
  14. G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quant. Electron. 39, 1645-1652 (2003). [CrossRef]
  15. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584-586 (1999). [CrossRef]
  16. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785-786 (2000). [CrossRef]
  17. J. A. Davis and G. H. Evans, “Polarizing binary diffraction grating beam splitter,” Opt. Lett. 29, 1443-1445 (2004). [CrossRef] [PubMed]
  18. I. Moreno, M. J. Yzuel, J. Campos, and A. Vargas, “Jones Matrix approach for polarization Fourier optics,” J. Mod. Opt. 51, 2031-2038 (2004). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  20. A. Martínez, M. M. Sánchez-López, and I. Moreno, “Phasor analysis of binary amplitude gratings with different fill factor,” Eur. J. Phys. 28, 805-816 (2007). [CrossRef]
  21. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278-6284 (2004). [CrossRef] [PubMed]
  22. J. A. Davis and M. A. Waring, “Contrast ratio improvement for the two-dimensional magneto-optic spatial light modulator,” Appl. Opt. 31, 6183-6184 (1992). [CrossRef] [PubMed]
  23. J. E. Stockley, G. D. Sharp, D. Doroski, and K. M. Johnson, “High-speed analog achromatic intensity modulator,” Opt. Lett. 19, 758-760 (1994). [CrossRef] [PubMed]
  24. J. L. Martinez, A. Martinez-Garcia, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911-918(2009). [CrossRef] [PubMed]
  25. S. Huard, Polarization of Light (Wiley, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited