OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 15 — May. 20, 2009
  • pp: 2924–2931

Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings

Seung Ho Choi, Sung June Kim, and Kyung Min Byun  »View Author Affiliations


Applied Optics, Vol. 48, Issue 15, pp. 2924-2931 (2009)
http://dx.doi.org/10.1364/AO.48.002924


View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transmission-type surface plasmon resonance configuration with dielectric gratings regularly patterned on a silver film was investigated with the aim of enhancing the diffraction efficiency of radiative surface plasmons. The theoretical work was conducted using rigorous coupled-wave analysis in terms of first order diffraction efficiency and conversion efficiency (CE). The results show that pyramid gratings can produce a higher transmittance compared with other grating profiles. Design optimization of the pyramid grating at a wide range of grating thicknesses and periods resulted in a maximum transmittance that was larger than 77% and a peak CE of about 85%. This study demonstrates the potential of using transmitted surface plasmon waves in various optical devices, such as optical biosensors, optical imaging systems, and polarization filters.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(310.0310) Thin films : Thin films

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 15, 2008
Revised Manuscript: March 30, 2009
Manuscript Accepted: April 23, 2009
Published: May 15, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Seung Ho Choi, Sung June Kim, and Kyung Min Byun, "Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings," Appl. Opt. 48, 2924-2931 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-15-2924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Okamoto, T. Kamiyama, and I. Yamaguchi, “All-optical spatial light modulator with surface plasmon resonance,” Opt. Lett. 18, 1570-1572 (1993). [CrossRef] [PubMed]
  2. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988).
  5. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  6. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979-2983 (2007). [CrossRef] [PubMed]
  7. J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77, 125407 (2008). [CrossRef]
  8. W. Rothballer, “The influence of surface plasma oscillations on the diffraction orders of sinusoidal surface gratings,” Opt. Commun. 20, 429-433 (1977). [CrossRef]
  9. M. J. Jory, P. S. Vukusic, and J. R. Sambles, “Development of a prototype gas sensor using surface plasmon resonance on gratings,” Sens. Actuators B 17, 203-209 (1994). [CrossRef]
  10. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870-1872 (2003). [CrossRef] [PubMed]
  11. C. Lenaerts, F. Michel, B. Tilkens, Y. Lion, and Y. Renotte, “High transmission efficiency for surface plasmon resonance by use of a dielectric grating,” Appl. Opt. 44, 6017-6022(2005). [CrossRef] [PubMed]
  12. K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703-5708 (2007). [CrossRef] [PubMed]
  13. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  14. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  15. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993). [CrossRef]
  16. Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, “Strong optical coupling effects through a continuous metal film with a surface dielectric grating,” Proc. SPIE 5927, 386-394 (2005).
  17. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737-3742 (2005). [CrossRef] [PubMed]
  18. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007). [CrossRef] [PubMed]
  19. S. Park, H. S. Won, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Grating-assisted emission of surface plasmons,” J. Korean Phys. Soc. 46, 492-497 (2005).
  20. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006). [CrossRef]
  21. J. A. Rogers and R. G. Nuzzo, “Recent progresses in soft lithography,” Mater. Today 8, 50-56 (2005). [CrossRef]
  22. Z. Yu and S. Y. Chou, “Triangular profile imprint molds in nanograting fabrication,” Nano Lett. 4, 341-344 (2004). [CrossRef]
  23. C.-H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2755-2759 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited