OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 2966–2978

Brewster angle prism retroreflectors for cavity enhanced spectroscopy

Kevin K. Lehmann, Paul S. Johnston, and Paul Rabinowitz  »View Author Affiliations


Applied Optics, Vol. 48, Issue 16, pp. 2966-2978 (2009)
http://dx.doi.org/10.1364/AO.48.002966


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of a high finesse optical cavity made from two prism retroreflectors is fully described. Optical beam propagation calculations to determine the specification of prism angles and relative dimensions, the size of the astigmatic TEM 00 beam as it propagates in the cavity, and the sensitivity of the optic axis to changes in prism alignment and fabrication errors are presented. The effects of material dispersion are also quantified for three different materials: fused silica, calcium fluoride, and barium fluoride. The predictions made are found to be in good agreement with experimental results obtained from prisms we had made from fused silica. Prisms made of CaF 2 and BaF 2 are predicted to be useful for applications in the UV and mid-IR spectral regions, respectively.

© 2009 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: December 22, 2008
Revised Manuscript: March 24, 2009
Manuscript Accepted: March 25, 2009
Published: May 20, 2009

Citation
Kevin K. Lehmann, Paul S. Johnston, and Paul Rabinowitz, "Brewster angle prism retroreflectors for cavity enhanced spectroscopy," Appl. Opt. 48, 2966-2978 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-16-2966


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  2. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763-3769 (1998). [CrossRef]
  3. A. O'Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331-336 (1998). [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996). [CrossRef]
  5. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997). [CrossRef]
  6. S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev. 103, 5219-5238 (2003). [CrossRef]
  7. P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523-4525 (2004). [CrossRef]
  8. A. McIlroy and J. B. Jeffries, “Cavity ringdown spectroscopy for concentration measurements,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 98-127.
  9. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387-2397 (2008). [CrossRef]
  10. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363-365 (1992). [CrossRef]
  11. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Holt, Rinehart and Winston, 1975), p. 328.
  12. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989(1997). [CrossRef]
  13. G. Engel, W. B. Yan, J. B. Dudek, K. K. Lehmann, and P. Rabinowitz, “Ring-down spectroscopy with a Brewster's angle prism resonator,” in Laser Spectroscopy XIV International Conference, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, eds. (World Scientific, 1999), pp. 314-315.
  14. K. K. Lehmann and P. Rabinowitz, “High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster's angle prism retroreflectors,” U.S. patent 5973864 (October 1999).
  15. P. S. Johnston and K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16, 15013-15023(2008). [CrossRef]
  16. H. Moosmuller, “Brewster's angle Porro prism: a different use for a Pellin-Broca prism,” Appl. Opt. 37, 8140-8142 (1998).
  17. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10(1999). [CrossRef]
  18. T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033-1042 (2002).
  19. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599(2006). [CrossRef]
  20. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μ,” Opt. Lett. 32, 307-309(2007). [CrossRef]
  21. A. E. Siegman, Lasers (University Science, 1986), p. 1283.
  22. A. E. Siegman, “Errata list for LASERS,” http://www.stanford.edu/~siegman/lasers_book_errata.pdf (17 June 2008), retrieved 09/23/2008.
  23. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207-3219(1983). [CrossRef]
  24. S. L. Logunov and S. A. Kuchinsky, “Scattering losses in fused silica and CaF2 for DUV applications,” Proc. SPIE 5040, 1396-1407 (2003).
  25. M.Bass, ed., Handbook of Optics Volume II--Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, ), Vol. 2.
  26. “BaF2 specifications” (Fairfield Crystal Technology), http://www.fairfieldcrystal.com/, retrieved 2 December 2008.
  27. U. L. Osterberg, “Optical fiber, cable, and connectors,” in Handbook of Fiber Optic Data Communication, C. DeCusatis, ed. (Academic, 2002).
  28. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16, L97-L100 (1983).
  29. N. F. Borrelli and R. A. Miller, “Determination of the individual strain-optic coefficients of glass by an ultrasonic technique,” Appl. Opt. 7, 745-750 (1968). [CrossRef]
  30. K. K. Lehmann, “Mathcad prism cavity analysis” (2007).
  31. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007). [CrossRef]
  32. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000). [CrossRef]
  33. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796-798 (2000). [CrossRef]
  34. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic,2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited