OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 2983–2990

Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy

Yong-Seok Choi and Sang-Joon Lee  »View Author Affiliations

Applied Optics, Vol. 48, Issue 16, pp. 2983-2990 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurement of blood flow with high spatial and temporal resolutions in a three-dimensional (3D) volume is a challenge in biomedical research fields. In this study, digital holographic microscopy is used to measure the 3D motion of human red blood cells (RBCs) in a microscale volume. The cinematographic holography technique, which uses a high-speed camera, enabled the continuous tracking of individual RBCs in a microtube flow. Several autofocus functions that quantify the sharpness of reconstructed RBC images are evaluated to locate the accurate depthwise position of RBCs. In this study, the squared Laplacian function yields the smallest depth of focus and locates the depthwise positions of RBCs with a root mean square error of 2.3 μm . By applying this method, we demonstrate the measurement of four-dimensional (space and time) trajectories as well as 3D velocity profiles of RBCs. The measurement uncertainties of the present method are also discussed.

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: March 4, 2009
Revised Manuscript: April 27, 2009
Manuscript Accepted: April 29, 2009
Published: May 20, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Yong-Seok Choi and Sang-Joon Lee, "Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy," Appl. Opt. 48, 2983-2990 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005). [CrossRef]
  2. R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007). [CrossRef] [PubMed]
  3. H. S. Ji and S. J. Lee, “In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube,” Clin. Hemorheol. Microcirc. 40, 19-30 (2008). [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  5. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007). [CrossRef] [PubMed]
  6. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  7. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004). [CrossRef]
  8. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microscopheres,” Appl. Opt. 41, 5367-5375 (2002). [CrossRef] [PubMed]
  9. S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005). [CrossRef]
  10. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006). [CrossRef] [PubMed]
  11. S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006). [CrossRef]
  12. S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microeng. 17, 2157-2162 (2007). [CrossRef]
  13. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007). [CrossRef] [PubMed]
  14. P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176-D182 (2008). [CrossRef] [PubMed]
  15. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005). [CrossRef] [PubMed]
  16. J. H. Milgram and W. Li, “Computational reconstruction of images from holograms,” Appl. Opt. 41, 853-864 (2002). [CrossRef] [PubMed]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  18. F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985). [CrossRef] [PubMed]
  19. A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” J. Opt. Soc. Am. A 22, 1176-1180 (2005). [CrossRef]
  20. S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23-32 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited