OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 16 — Jun. 1, 2009
  • pp: 3050–3054

Fabrication and characterization of chalcogenide glass for hollow Bragg fibers

Bradley F. Bowden and James A. Harrington  »View Author Affiliations

Applied Optics, Vol. 48, Issue 16, pp. 3050-3054 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Low- and high-refractive-index chalcogenide glasses are studied for their potential use in the fabrication of one-dimensional hollow Bragg fibers. The low-index glasses are based on the GeSe–glass systems with indices varying from 2.0 to 2.5, while the high-index glasses are formed from the AgAsSe glasses with indices ranging from 2.8 to 3.8. High-purity elemental starting materials are distilled and the surface oxides removed prior to mixing in a rocking furnace. The refractive indices of the AgAsSe glasses, measured using a CO 2 laser reflectometer, were near 3.10 for the compositions most compatible with the low-index Ge 20 Se 80 glass ( n = 2.46 ). Spectral measurements show impurity absorption bands between 12 and 16 μm . The loss at 10.6 μm for the Ag 25 As 40 Se 35 glass measured using CO 2 laser calorimetry was 1.16 × 10 3 cm 1 .

© 2009 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 19, 2009
Revised Manuscript: April 30, 2009
Manuscript Accepted: May 1, 2009
Published: May 22, 2009

Bradley F. Bowden and James A. Harrington, "Fabrication and characterization of chalcogenide glass for hollow Bragg fibers," Appl. Opt. 48, 3050-3054 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004). [CrossRef]
  2. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag--AgI coatings,” Appl. Opt. 44, 6449-6455 (2005). [CrossRef] [PubMed]
  3. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978). [CrossRef]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  6. L. P. Tate and Y. A. Elce, “Transendoscopic application of CO2 laser radiation using the OmniGuide fiber,” Proc. SPIE 5686, 612-619 (2005). [CrossRef]
  7. B. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1-D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66-72 (2005). [CrossRef]
  8. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).
  9. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  10. T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979). [CrossRef]
  11. A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991). [CrossRef]
  12. Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).
  13. J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992). [CrossRef]
  14. Z. U. Borisova and T. S. Rykova, “Some features of glass formation in the silver-arsenic-selenium systems,” Sov. J. Glass Phys. Chem 3, 537-540 (1977).
  15. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995). [CrossRef]
  16. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992). [CrossRef]
  17. E. Hecht, Optics (Pearson Education, 2002).
  18. B. J. Stagg and T. T. Charalampopulos, “Sensitivity of the reflection technique: optimum angles of incidence to determine the properties of materials,” Appl. Opt. 31, 4420-4427 (1992). [CrossRef] [PubMed]
  19. D. L. Windt, “Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370 (1998). [CrossRef]
  20. H. B. Rosenstock, M. Hass, D. A. Gregory, and J. A. Harrington, “Analysis of laser calorimetric data,” Appl. Opt. 16, 2837-2842 (1977). [CrossRef] [PubMed]
  21. J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993). [CrossRef]
  22. U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37, 8362-8370 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited